云计算中用于高性能计算和人工智能的 GPU 计算实例的稳健评估:采用敏感性、引导和非参数分析的 TOPSIS 方法

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, THEORY & METHODS
Mandeep Kumar, Gagandeep Kaur, Prashant Singh Rana
{"title":"云计算中用于高性能计算和人工智能的 GPU 计算实例的稳健评估:采用敏感性、引导和非参数分析的 TOPSIS 方法","authors":"Mandeep Kumar, Gagandeep Kaur, Prashant Singh Rana","doi":"10.1007/s00607-024-01342-6","DOIUrl":null,"url":null,"abstract":"<p>Evaluating GPU compute instances for High Performance Computing (HPC) and Artificial Intelligence (AI) applications in the cloud involves complex decision-making processes. This research applies the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to rank various GPU compute instances for HPC and AI from leading cloud providers: Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), and Oracle Cloud Infrastructure (OCI). The analysis incorporates a sensitivity examination, bootstrapping, and non-parametric tests to ensure robust and reliable rankings. Sensitivity analysis reveals the stability of the TOPSIS framework despite variations in criteria weights, while bootstrap analysis provides confidence intervals for the rankings, highlighting their consistency. The Friedman test confirms that ranking stability persists across different scenarios, indicating minimal impact from weight adjustments. Despite these insights, limitations such as interdependencies among criteria, data accuracy, and generalizability constraints must be acknowledged. This comprehensive approach ensures informed decision-making for selecting optimal GPU instances for cloud-based HPC and AI tasks.\n</p>","PeriodicalId":10718,"journal":{"name":"Computing","volume":"40 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust evaluation of GPU compute instances for HPC and AI in the cloud: a TOPSIS approach with sensitivity, bootstrapping, and non-parametric analysis\",\"authors\":\"Mandeep Kumar, Gagandeep Kaur, Prashant Singh Rana\",\"doi\":\"10.1007/s00607-024-01342-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Evaluating GPU compute instances for High Performance Computing (HPC) and Artificial Intelligence (AI) applications in the cloud involves complex decision-making processes. This research applies the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to rank various GPU compute instances for HPC and AI from leading cloud providers: Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), and Oracle Cloud Infrastructure (OCI). The analysis incorporates a sensitivity examination, bootstrapping, and non-parametric tests to ensure robust and reliable rankings. Sensitivity analysis reveals the stability of the TOPSIS framework despite variations in criteria weights, while bootstrap analysis provides confidence intervals for the rankings, highlighting their consistency. The Friedman test confirms that ranking stability persists across different scenarios, indicating minimal impact from weight adjustments. Despite these insights, limitations such as interdependencies among criteria, data accuracy, and generalizability constraints must be acknowledged. This comprehensive approach ensures informed decision-making for selecting optimal GPU instances for cloud-based HPC and AI tasks.\\n</p>\",\"PeriodicalId\":10718,\"journal\":{\"name\":\"Computing\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00607-024-01342-6\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00607-024-01342-6","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

评估云中高性能计算(HPC)和人工智能(AI)应用的 GPU 计算实例涉及复杂的决策过程。本研究采用 "与理想解决方案相似度排序技术"(TOPSIS),对主要云提供商提供的用于高性能计算和人工智能的各种 GPU 计算实例进行排序:亚马逊网络服务(AWS)、微软 Azure、谷歌云平台(GCP)和甲骨文云基础设施(OCI)。分析结合了灵敏度检查、引导和非参数检验,以确保排名稳健可靠。灵敏度分析揭示了 TOPSIS 框架在标准权重变化的情况下的稳定性,而自举分析提供了排名的置信区间,突出了排名的一致性。弗里德曼检验证实,在不同的情况下,排名的稳定性依然存在,这表明权重调整的影响微乎其微。尽管获得了这些启示,但仍必须承认一些局限性,如标准之间的相互依存性、数据准确性和可推广性限制。这种综合方法可确保为基于云的高性能计算和人工智能任务选择最佳 GPU 实例做出明智的决策。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Robust evaluation of GPU compute instances for HPC and AI in the cloud: a TOPSIS approach with sensitivity, bootstrapping, and non-parametric analysis

Robust evaluation of GPU compute instances for HPC and AI in the cloud: a TOPSIS approach with sensitivity, bootstrapping, and non-parametric analysis

Evaluating GPU compute instances for High Performance Computing (HPC) and Artificial Intelligence (AI) applications in the cloud involves complex decision-making processes. This research applies the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) to rank various GPU compute instances for HPC and AI from leading cloud providers: Amazon Web Services (AWS), Microsoft Azure, Google Cloud Platform (GCP), and Oracle Cloud Infrastructure (OCI). The analysis incorporates a sensitivity examination, bootstrapping, and non-parametric tests to ensure robust and reliable rankings. Sensitivity analysis reveals the stability of the TOPSIS framework despite variations in criteria weights, while bootstrap analysis provides confidence intervals for the rankings, highlighting their consistency. The Friedman test confirms that ranking stability persists across different scenarios, indicating minimal impact from weight adjustments. Despite these insights, limitations such as interdependencies among criteria, data accuracy, and generalizability constraints must be acknowledged. This comprehensive approach ensures informed decision-making for selecting optimal GPU instances for cloud-based HPC and AI tasks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computing
Computing 工程技术-计算机:理论方法
CiteScore
8.20
自引率
2.70%
发文量
107
审稿时长
3 months
期刊介绍: Computing publishes original papers, short communications and surveys on all fields of computing. The contributions should be written in English and may be of theoretical or applied nature, the essential criteria are computational relevance and systematic foundation of results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信