{"title":"LGFF-YOLO:基于高效局部-全局特征融合的无人机图像小目标检测方法","authors":"Hongxing Peng, Haopei Xie, Huanai Liu, Xianlu Guan","doi":"10.1007/s11554-024-01550-5","DOIUrl":null,"url":null,"abstract":"<p>Images captured by Unmanned Aerial Vehicles (UAVs) play a significant role in many fields. However, with the development of UAV technology, challenges such as detecting small and dense objects against complex backgrounds have emerged. In this paper, we propose LGFF-YOLO, a detection model that integrates a novel local–global feature fusion method with the YOLOv8 baseline, specifically designed for small object detection in UAV imagery. Our innovative approach employs the Global Information Fusion Module (GIFM) and the Four-Leaf Clover Fusion Module (FLCM) to enhance the fusion of multi-scale features, improving detection accuracy without increasing model complexity. Next, we proposed the RFA-Block and LDyHead to control the total number of model parameters and improve the representation capability for small object detection. Experimental results on the VisDrone2019 dataset demonstrate a 38.3% mAP with only 4.15M parameters, a 4. 5% increase over baseline YOLOv8, while achieving 79.1 FPS for real-time detection. These advancements enhance the model’s generalization capability, balancing accuracy and speed, and significantly extend its applicability for detecting small objects in UAV images.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"29 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LGFF-YOLO: small object detection method of UAV images based on efficient local–global feature fusion\",\"authors\":\"Hongxing Peng, Haopei Xie, Huanai Liu, Xianlu Guan\",\"doi\":\"10.1007/s11554-024-01550-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Images captured by Unmanned Aerial Vehicles (UAVs) play a significant role in many fields. However, with the development of UAV technology, challenges such as detecting small and dense objects against complex backgrounds have emerged. In this paper, we propose LGFF-YOLO, a detection model that integrates a novel local–global feature fusion method with the YOLOv8 baseline, specifically designed for small object detection in UAV imagery. Our innovative approach employs the Global Information Fusion Module (GIFM) and the Four-Leaf Clover Fusion Module (FLCM) to enhance the fusion of multi-scale features, improving detection accuracy without increasing model complexity. Next, we proposed the RFA-Block and LDyHead to control the total number of model parameters and improve the representation capability for small object detection. Experimental results on the VisDrone2019 dataset demonstrate a 38.3% mAP with only 4.15M parameters, a 4. 5% increase over baseline YOLOv8, while achieving 79.1 FPS for real-time detection. These advancements enhance the model’s generalization capability, balancing accuracy and speed, and significantly extend its applicability for detecting small objects in UAV images.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":\"29 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01550-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01550-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
LGFF-YOLO: small object detection method of UAV images based on efficient local–global feature fusion
Images captured by Unmanned Aerial Vehicles (UAVs) play a significant role in many fields. However, with the development of UAV technology, challenges such as detecting small and dense objects against complex backgrounds have emerged. In this paper, we propose LGFF-YOLO, a detection model that integrates a novel local–global feature fusion method with the YOLOv8 baseline, specifically designed for small object detection in UAV imagery. Our innovative approach employs the Global Information Fusion Module (GIFM) and the Four-Leaf Clover Fusion Module (FLCM) to enhance the fusion of multi-scale features, improving detection accuracy without increasing model complexity. Next, we proposed the RFA-Block and LDyHead to control the total number of model parameters and improve the representation capability for small object detection. Experimental results on the VisDrone2019 dataset demonstrate a 38.3% mAP with only 4.15M parameters, a 4. 5% increase over baseline YOLOv8, while achieving 79.1 FPS for real-time detection. These advancements enhance the model’s generalization capability, balancing accuracy and speed, and significantly extend its applicability for detecting small objects in UAV images.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.