量化无穷维延迟系统中的可预测性和盆地结构:随机盆地熵方法

Juan P. Tarigo, Cecilia Stari, Arturo C. Marti
{"title":"量化无穷维延迟系统中的可预测性和盆地结构:随机盆地熵方法","authors":"Juan P. Tarigo, Cecilia Stari, Arturo C. Marti","doi":"arxiv-2409.01878","DOIUrl":null,"url":null,"abstract":"The Mackey-Glass system is a paradigmatic example of a delayed model whose\ndynamics is particularly complex due to, among other factors, its\nmultistability involving the coexistence of many periodic and chaotic\nattractors. The prediction of the long-term dynamics is especially challenging\nin these systems, where the dimensionality is infinite and initial conditions\nmust be specified as a function in a finite time interval. In this paper we\nextend the recently proposed basin entropy to randomly sample arbitrarily\nhigh-dimensional spaces. By complementing this stochastic approach with the\nbasin fraction of the attractors in the initial conditions space we can\nunderstand the structure of the basins of attraction and how they are\nintermixed. The results reported here allow us to quantify the predictability\nand provide indicators of the presence of bifurcations. The tools employed can\nresult very useful in the study of complex systems of infinite dimension.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"112 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying predictability and basin structure in infinite-dimensional delayed systems: a stochastic basin entropy approach\",\"authors\":\"Juan P. Tarigo, Cecilia Stari, Arturo C. Marti\",\"doi\":\"arxiv-2409.01878\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Mackey-Glass system is a paradigmatic example of a delayed model whose\\ndynamics is particularly complex due to, among other factors, its\\nmultistability involving the coexistence of many periodic and chaotic\\nattractors. The prediction of the long-term dynamics is especially challenging\\nin these systems, where the dimensionality is infinite and initial conditions\\nmust be specified as a function in a finite time interval. In this paper we\\nextend the recently proposed basin entropy to randomly sample arbitrarily\\nhigh-dimensional spaces. By complementing this stochastic approach with the\\nbasin fraction of the attractors in the initial conditions space we can\\nunderstand the structure of the basins of attraction and how they are\\nintermixed. The results reported here allow us to quantify the predictability\\nand provide indicators of the presence of bifurcations. The tools employed can\\nresult very useful in the study of complex systems of infinite dimension.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.01878\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.01878","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

麦基-格拉斯系统是延迟模型的一个典型例子,其动力学特别复杂,原因之一是它的多义性涉及许多周期性和混沌曳光弹的共存。在这些系统中,维数是无限的,而初始条件必须指定为有限时间间隔内的函数,因此长期动力学预测尤其具有挑战性。在本文中,我们将最近提出的盆地熵扩展到任意高维空间的随机采样。通过用初始条件空间中吸引子的盆地分数来补充这种随机方法,我们可以了解吸引盆地的结构以及它们是如何混合的。本文报告的结果使我们能够量化可预测性,并提供分岔存在的指标。所使用的工具对于研究无限维度的复杂系统非常有用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantifying predictability and basin structure in infinite-dimensional delayed systems: a stochastic basin entropy approach
The Mackey-Glass system is a paradigmatic example of a delayed model whose dynamics is particularly complex due to, among other factors, its multistability involving the coexistence of many periodic and chaotic attractors. The prediction of the long-term dynamics is especially challenging in these systems, where the dimensionality is infinite and initial conditions must be specified as a function in a finite time interval. In this paper we extend the recently proposed basin entropy to randomly sample arbitrarily high-dimensional spaces. By complementing this stochastic approach with the basin fraction of the attractors in the initial conditions space we can understand the structure of the basins of attraction and how they are intermixed. The results reported here allow us to quantify the predictability and provide indicators of the presence of bifurcations. The tools employed can result very useful in the study of complex systems of infinite dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信