两个等时共振扰动的无剪切分岔

Bruno B. Leal, Matheus J. Lazarotto, Michele Mugnaine, Alfredo M. Ozorio de Almeida, Ricardo L. Viana, Iberê L. Caldas
{"title":"两个等时共振扰动的无剪切分岔","authors":"Bruno B. Leal, Matheus J. Lazarotto, Michele Mugnaine, Alfredo M. Ozorio de Almeida, Ricardo L. Viana, Iberê L. Caldas","doi":"arxiv-2408.10930","DOIUrl":null,"url":null,"abstract":"In nontwist systems, primary shearless curves act as barriers to chaotic\ntransport. Surprisingly, the onset of secondary shearless curves has been\nreported in a few twist systems. Meanwhile, we found that, in twist systems,\nthe onset of these secondary shearless curves is a standard process that may\nappear as control parameters are varied in situations where there is resonant\nmode coupling. Namely, we analyze these shearless bifurcations in two-harmonic\nsystems for the standard map, the Ullmann map, and for the Walker-Ford\nHamiltonian flow. The onset of shearless curves is related to bifurcations of\nperiodic points. Furthermore, depending on the bifurcation, these shearless\ncurves can emerge alone or in pairs, and in some cases, deform into\nseparatrices.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shearless bifurcations for two isochronous resonant perturbations\",\"authors\":\"Bruno B. Leal, Matheus J. Lazarotto, Michele Mugnaine, Alfredo M. Ozorio de Almeida, Ricardo L. Viana, Iberê L. Caldas\",\"doi\":\"arxiv-2408.10930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In nontwist systems, primary shearless curves act as barriers to chaotic\\ntransport. Surprisingly, the onset of secondary shearless curves has been\\nreported in a few twist systems. Meanwhile, we found that, in twist systems,\\nthe onset of these secondary shearless curves is a standard process that may\\nappear as control parameters are varied in situations where there is resonant\\nmode coupling. Namely, we analyze these shearless bifurcations in two-harmonic\\nsystems for the standard map, the Ullmann map, and for the Walker-Ford\\nHamiltonian flow. The onset of shearless curves is related to bifurcations of\\nperiodic points. Furthermore, depending on the bifurcation, these shearless\\ncurves can emerge alone or in pairs, and in some cases, deform into\\nseparatrices.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.10930\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.10930","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在非扭转系统中,一级无剪切力曲线是混沌传输的障碍。令人惊讶的是,在少数扭曲系统中也出现了二次无剪切力曲线。与此同时,我们发现,在扭曲系统中,这些次级无剪切力曲线的出现是一个标准过程,在存在共振模式耦合的情况下,随着控制参数的变化可能会出现。也就是说,我们分析了标准图谱、乌尔曼图谱和沃克-福德-哈密顿流的双谐波系统中的无剪切分岔。无剪切曲线的发生与周期点的分岔有关。此外,根据分岔的不同,这些无剪切力曲线可以单独出现,也可以成对出现,在某些情况下还会变形为单独的曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shearless bifurcations for two isochronous resonant perturbations
In nontwist systems, primary shearless curves act as barriers to chaotic transport. Surprisingly, the onset of secondary shearless curves has been reported in a few twist systems. Meanwhile, we found that, in twist systems, the onset of these secondary shearless curves is a standard process that may appear as control parameters are varied in situations where there is resonant mode coupling. Namely, we analyze these shearless bifurcations in two-harmonic systems for the standard map, the Ullmann map, and for the Walker-Ford Hamiltonian flow. The onset of shearless curves is related to bifurcations of periodic points. Furthermore, depending on the bifurcation, these shearless curves can emerge alone or in pairs, and in some cases, deform into separatrices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信