在简单离散时间忆阻器电路中嵌入经典混沌图

Mauro Di Marco, Mauro Forti, Giacomo Innocenti, Luca Pancioni, Alberto Tesi
{"title":"在简单离散时间忆阻器电路中嵌入经典混沌图","authors":"Mauro Di Marco, Mauro Forti, Giacomo Innocenti, Luca Pancioni, Alberto Tesi","doi":"arxiv-2408.16352","DOIUrl":null,"url":null,"abstract":"In the last few years the literature has witnessed a remarkable surge of\ninterest for maps implemented by discrete-time (DT) memristor circuits. This\npaper investigates on the reasons underlying this type of complex behavior. To\nthis end, the papers considers the map implemented by the simplest memristor\ncircuit given by a capacitor and an ideal flux-controlled memristor or an\ninductor and an ideal charge-controlled memristor. In particular, the\nmanuscript uses the DT flux-charge analysis method (FCAM) introduced in a\nrecent paper to ensure that the first integrals and foliation in invariant\nmanifolds of continuous-time (CT) memristor circuits are preserved exactly in\nthe discretization for any step size. DT-FCAM yields a two-dimensional map in\nthe voltage-current domain (VCD) and a manifold-dependent one-dimensional map\nin the flux-charge domain (FCD), i.e., a one-dimensional map on each invariant\nmanifold. One main result is that, for suitable choices of the circuit\nparameters and memristor nonlinearities, both DT circuits can exactly embed two\nclassic chaotic maps, i.e., the logistic map and the tent map. Moreover, due to\nthe property of extreme multistability, the DT circuits can simultaneously\nembed in the manifolds all the dynamics displayed by varying one parameter in\nthe logistic and tent map. The paper then considers a DT memristor\nMurali-Lakshmanan-Chua circuit and its dual. Via DT-FCAM these circuits\nimplement a three-dimensional map in the VCD and a two-dimensional map on each\ninvariant manifold in the FCD. It is shown that both circuits can\nsimultaneously embed in the manifolds all the dynamics displayed by two other\nclassic chaotic maps, i.e., the Henon map and the Lozi map, when varying one\nparameter in such maps. In essence, these results provide an explanation of why\nit is not surprising to observe complex dynamics even in simple DT memristor\ncircuits.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding classic chaotic maps in simple discrete-time memristor circuits\",\"authors\":\"Mauro Di Marco, Mauro Forti, Giacomo Innocenti, Luca Pancioni, Alberto Tesi\",\"doi\":\"arxiv-2408.16352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the last few years the literature has witnessed a remarkable surge of\\ninterest for maps implemented by discrete-time (DT) memristor circuits. This\\npaper investigates on the reasons underlying this type of complex behavior. To\\nthis end, the papers considers the map implemented by the simplest memristor\\ncircuit given by a capacitor and an ideal flux-controlled memristor or an\\ninductor and an ideal charge-controlled memristor. In particular, the\\nmanuscript uses the DT flux-charge analysis method (FCAM) introduced in a\\nrecent paper to ensure that the first integrals and foliation in invariant\\nmanifolds of continuous-time (CT) memristor circuits are preserved exactly in\\nthe discretization for any step size. DT-FCAM yields a two-dimensional map in\\nthe voltage-current domain (VCD) and a manifold-dependent one-dimensional map\\nin the flux-charge domain (FCD), i.e., a one-dimensional map on each invariant\\nmanifold. One main result is that, for suitable choices of the circuit\\nparameters and memristor nonlinearities, both DT circuits can exactly embed two\\nclassic chaotic maps, i.e., the logistic map and the tent map. Moreover, due to\\nthe property of extreme multistability, the DT circuits can simultaneously\\nembed in the manifolds all the dynamics displayed by varying one parameter in\\nthe logistic and tent map. The paper then considers a DT memristor\\nMurali-Lakshmanan-Chua circuit and its dual. Via DT-FCAM these circuits\\nimplement a three-dimensional map in the VCD and a two-dimensional map on each\\ninvariant manifold in the FCD. It is shown that both circuits can\\nsimultaneously embed in the manifolds all the dynamics displayed by two other\\nclassic chaotic maps, i.e., the Henon map and the Lozi map, when varying one\\nparameter in such maps. In essence, these results provide an explanation of why\\nit is not surprising to observe complex dynamics even in simple DT memristor\\ncircuits.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.16352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.16352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在过去几年中,文献中对由离散时间(DT)忆阻器电路实现的映射的兴趣显著增加。本文研究了这种复杂行为背后的原因。为此,本文考虑了由电容器和理想通量控制忆阻器或电感器和理想电荷控制忆阻器构成的最简单忆阻器电路实现的映射。特别是,这篇手稿使用了前一篇论文中介绍的 DT 通量电荷分析方法(FCAM),以确保连续时间(CT)忆阻器电路无变量积分和折线在任何步长的离散化过程中都得到精确保留。DT-FCAM 在电压-电流域(VCD)中产生了一个二维映射,在通量-电荷域(FCD)中产生了一个与流形相关的一维映射,即在每个不变量上产生了一个一维映射。其中一个主要结果是,在电路参数和忆阻器非线性条件合适的情况下,两个DT电路都能精确嵌入两个经典混沌图,即逻辑图和帐篷图。此外,由于极度多稳定性的特性,DT 电路可以同时在流形中嵌入通过改变对数图和帐篷图中的一个参数而显示的所有动态。随后,论文探讨了 DT MemristorMurali-Lakshmanan-Chua 电路及其对偶电路。通过 DT-FCAM,这些电路在 VCD 中实现了一个三维映射,在 FCD 中的每个不变流形上实现了一个二维映射。结果表明,当改变流形中的一个参数时,这两个电路可以同时在流形中嵌入另外两个经典混沌图(即 Henon 图和 Lozi 图)所显示的所有动力学。从本质上讲,这些结果解释了为什么即使在简单的DT忆阻器电路中观察到复杂的动力学也不足为奇。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedding classic chaotic maps in simple discrete-time memristor circuits
In the last few years the literature has witnessed a remarkable surge of interest for maps implemented by discrete-time (DT) memristor circuits. This paper investigates on the reasons underlying this type of complex behavior. To this end, the papers considers the map implemented by the simplest memristor circuit given by a capacitor and an ideal flux-controlled memristor or an inductor and an ideal charge-controlled memristor. In particular, the manuscript uses the DT flux-charge analysis method (FCAM) introduced in a recent paper to ensure that the first integrals and foliation in invariant manifolds of continuous-time (CT) memristor circuits are preserved exactly in the discretization for any step size. DT-FCAM yields a two-dimensional map in the voltage-current domain (VCD) and a manifold-dependent one-dimensional map in the flux-charge domain (FCD), i.e., a one-dimensional map on each invariant manifold. One main result is that, for suitable choices of the circuit parameters and memristor nonlinearities, both DT circuits can exactly embed two classic chaotic maps, i.e., the logistic map and the tent map. Moreover, due to the property of extreme multistability, the DT circuits can simultaneously embed in the manifolds all the dynamics displayed by varying one parameter in the logistic and tent map. The paper then considers a DT memristor Murali-Lakshmanan-Chua circuit and its dual. Via DT-FCAM these circuits implement a three-dimensional map in the VCD and a two-dimensional map on each invariant manifold in the FCD. It is shown that both circuits can simultaneously embed in the manifolds all the dynamics displayed by two other classic chaotic maps, i.e., the Henon map and the Lozi map, when varying one parameter in such maps. In essence, these results provide an explanation of why it is not surprising to observe complex dynamics even in simple DT memristor circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信