行进波流中的惯性粒子动力学

P. Swaathi, Sanjit Das, N. Nirmal Thyagu
{"title":"行进波流中的惯性粒子动力学","authors":"P. Swaathi, Sanjit Das, N. Nirmal Thyagu","doi":"arxiv-2409.00484","DOIUrl":null,"url":null,"abstract":"The dynamics of inertial particles in fluid flows have been the focus of\nextensive research due to their relevance in a wide range of industrial and\nenvironmental processes. Earlier studies have examined the dynamics of aerosols\nand bubbles using the Maxey-Riley equation in some standard systems but their\ndynamics within the traveling wave flow remain unexplored. In this paper, we\nstudy the Lagrangian dynamics of inertial particles in the traveling wave flow\nwhich shows mixing, and segregation in phase space as well as the formation of\nLagrangian Coherent Structures (LCS). We first obtain the finite-time Lyapunov\nexponent (FTLEs) for the base fluid flow defined by the traveling wave flow\nusing the Cauchy-Green deformation tensor. Further, we extend our calculations\nto the inertial particles to get the inertial finite-time Lyapunov exponent\n(iFTLEs). Our findings reveal that heavier inertial particles tend to be\nattracted to the ridges of the FTLE fields, while lighter particles are\nrepelled. By understanding how material elements in a flow separate and\nstretch, one can predict pollutant dispersion, optimize the mixing process, and\nimprove navigation and tracking in fluid environments. This provides insights\ninto the complex and non-intuitive behavior of inertial particles in chaotic\nfluid flows, and may have implications for pollutant transport in wide-ranging\nfields such as atmospheric and oceanic sciences.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inertial Particle Dynamics in Traveling Wave Flow\",\"authors\":\"P. Swaathi, Sanjit Das, N. Nirmal Thyagu\",\"doi\":\"arxiv-2409.00484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The dynamics of inertial particles in fluid flows have been the focus of\\nextensive research due to their relevance in a wide range of industrial and\\nenvironmental processes. Earlier studies have examined the dynamics of aerosols\\nand bubbles using the Maxey-Riley equation in some standard systems but their\\ndynamics within the traveling wave flow remain unexplored. In this paper, we\\nstudy the Lagrangian dynamics of inertial particles in the traveling wave flow\\nwhich shows mixing, and segregation in phase space as well as the formation of\\nLagrangian Coherent Structures (LCS). We first obtain the finite-time Lyapunov\\nexponent (FTLEs) for the base fluid flow defined by the traveling wave flow\\nusing the Cauchy-Green deformation tensor. Further, we extend our calculations\\nto the inertial particles to get the inertial finite-time Lyapunov exponent\\n(iFTLEs). Our findings reveal that heavier inertial particles tend to be\\nattracted to the ridges of the FTLE fields, while lighter particles are\\nrepelled. By understanding how material elements in a flow separate and\\nstretch, one can predict pollutant dispersion, optimize the mixing process, and\\nimprove navigation and tracking in fluid environments. This provides insights\\ninto the complex and non-intuitive behavior of inertial particles in chaotic\\nfluid flows, and may have implications for pollutant transport in wide-ranging\\nfields such as atmospheric and oceanic sciences.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.00484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

惯性粒子在流体流动中的动力学一直是广泛研究的重点,因为它们与各种工业和环境过程息息相关。早期的研究利用 Maxey-Riley 方程在一些标准系统中研究了气溶胶和气泡的动力学,但它们在行波流中的动力学仍未得到探讨。本文研究了惯性粒子在行波流中的拉格朗日动力学,它显示了相空间中的混合、分离以及拉格朗日相干结构(LCS)的形成。我们首先利用考奇-格林变形张量得到了行波流定义的基流体流的有限时间里亚普运动分量(FTLEs)。然后,我们将计算扩展到惯性粒子,得到了惯性有限时间李亚普诺夫指数(iFTLEs)。我们的研究结果表明,较重的惯性粒子倾向于被吸引到 FTLE 场的脊上,而较轻的粒子则被排斥。通过了解流动中的物质元素是如何分离和伸展的,我们可以预测污染物的扩散,优化混合过程,并改进流体环境中的导航和跟踪。这有助于深入了解惯性粒子在混乱流体流中的复杂和非直观行为,并可能对大气和海洋科学等广泛领域的污染物传输产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Inertial Particle Dynamics in Traveling Wave Flow
The dynamics of inertial particles in fluid flows have been the focus of extensive research due to their relevance in a wide range of industrial and environmental processes. Earlier studies have examined the dynamics of aerosols and bubbles using the Maxey-Riley equation in some standard systems but their dynamics within the traveling wave flow remain unexplored. In this paper, we study the Lagrangian dynamics of inertial particles in the traveling wave flow which shows mixing, and segregation in phase space as well as the formation of Lagrangian Coherent Structures (LCS). We first obtain the finite-time Lyapunov exponent (FTLEs) for the base fluid flow defined by the traveling wave flow using the Cauchy-Green deformation tensor. Further, we extend our calculations to the inertial particles to get the inertial finite-time Lyapunov exponent (iFTLEs). Our findings reveal that heavier inertial particles tend to be attracted to the ridges of the FTLE fields, while lighter particles are repelled. By understanding how material elements in a flow separate and stretch, one can predict pollutant dispersion, optimize the mixing process, and improve navigation and tracking in fluid environments. This provides insights into the complex and non-intuitive behavior of inertial particles in chaotic fluid flows, and may have implications for pollutant transport in wide-ranging fields such as atmospheric and oceanic sciences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信