剪切速度边界条件下耦合振荡器的非平衡动力学

Hidetsugu Sakaguchi
{"title":"剪切速度边界条件下耦合振荡器的非平衡动力学","authors":"Hidetsugu Sakaguchi","doi":"arxiv-2409.02515","DOIUrl":null,"url":null,"abstract":"Deterministic and stochastic coupled oscillators with inertia are studied on\nthe rectangular lattice under the shear-velocity boundary condition. Our\ncoupled oscillator model exhibits various nontrivial phenomena and there are\nvarious relationships with wide research areas such as the coupled limit-cycle\noscillators, the dislocation theory, a block-spring model of earthquakes, and\nthe nonequilibrium molecular dynamics. We show numerically several unique\nnonequilibrium properties of the coupled oscillators. We find that the spatial\nprofiles of the average value and variance of the velocity become non-uniform\nwhen the dissipation rate is large. The probability distribution of the\nvelocity sometimes deviates from the Gaussian distribution. The time evolution\nof kinetic energy becomes intermittent when the shear rate is small and the\ntemperature is small but not zero. The intermittent jumps of the kinetic energy\ncause a long tail in the velocity distribution.","PeriodicalId":501167,"journal":{"name":"arXiv - PHYS - Chaotic Dynamics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonequilibrium dynamics of coupled oscillators under the shear-velocity boundary condition\",\"authors\":\"Hidetsugu Sakaguchi\",\"doi\":\"arxiv-2409.02515\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deterministic and stochastic coupled oscillators with inertia are studied on\\nthe rectangular lattice under the shear-velocity boundary condition. Our\\ncoupled oscillator model exhibits various nontrivial phenomena and there are\\nvarious relationships with wide research areas such as the coupled limit-cycle\\noscillators, the dislocation theory, a block-spring model of earthquakes, and\\nthe nonequilibrium molecular dynamics. We show numerically several unique\\nnonequilibrium properties of the coupled oscillators. We find that the spatial\\nprofiles of the average value and variance of the velocity become non-uniform\\nwhen the dissipation rate is large. The probability distribution of the\\nvelocity sometimes deviates from the Gaussian distribution. The time evolution\\nof kinetic energy becomes intermittent when the shear rate is small and the\\ntemperature is small but not zero. The intermittent jumps of the kinetic energy\\ncause a long tail in the velocity distribution.\",\"PeriodicalId\":501167,\"journal\":{\"name\":\"arXiv - PHYS - Chaotic Dynamics\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Chaotic Dynamics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.02515\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02515","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在剪切速度边界条件下,研究了矩形晶格上具有惯性的确定性和随机耦合振荡器。我们的耦合振荡器模型表现出各种非难现象,并与耦合极限周期振荡器、位错理论、地震的块弹簧模型和非平衡分子动力学等广泛的研究领域存在各种关系。我们用数值方法展示了耦合振荡器的几个独特的非平衡特性。我们发现,当耗散率较大时,速度的平均值和方差的空间分布变得不均匀。速度的概率分布有时偏离高斯分布。当剪切速率较小,温度较低但不为零时,动能的时间演化变得断断续续。动能的间歇跳跃导致速度分布出现长尾。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonequilibrium dynamics of coupled oscillators under the shear-velocity boundary condition
Deterministic and stochastic coupled oscillators with inertia are studied on the rectangular lattice under the shear-velocity boundary condition. Our coupled oscillator model exhibits various nontrivial phenomena and there are various relationships with wide research areas such as the coupled limit-cycle oscillators, the dislocation theory, a block-spring model of earthquakes, and the nonequilibrium molecular dynamics. We show numerically several unique nonequilibrium properties of the coupled oscillators. We find that the spatial profiles of the average value and variance of the velocity become non-uniform when the dissipation rate is large. The probability distribution of the velocity sometimes deviates from the Gaussian distribution. The time evolution of kinetic energy becomes intermittent when the shear rate is small and the temperature is small but not zero. The intermittent jumps of the kinetic energy cause a long tail in the velocity distribution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信