Jeremy M. Quintana, Jonathan C. T. Carlson, Ella Scott, Thomas S. C. Ng, Miles A. Miller, Ralph Weissleder
{"title":"裂变增强分子成像(SEMI)","authors":"Jeremy M. Quintana, Jonathan C. T. Carlson, Ella Scott, Thomas S. C. Ng, Miles A. Miller, Ralph Weissleder","doi":"10.1021/acs.bioconjchem.4c00337","DOIUrl":null,"url":null,"abstract":"Positron emission tomography (PET) imaging methods have advanced our understanding of human biology, while targeted radiotherapeutic drug treatments are now routinely used clinically. The field is expected to grow considerably based on an expanding repertoire of available affinity ligands, radionuclides, conjugation chemistries, and their FDA approvals. With this increasing use, strategies for dose reduction have become of high interest to protect patients from unnecessary and off-target toxicity. Here, we describe a simple and powerful method, scission-enhanced molecular imaging (SEMI). The technique allows for rapid corporeal elimination of radionuclides once imaging or theranostic treatment is completed and relies on “click-to-release” bioorthogonal linkers.","PeriodicalId":501658,"journal":{"name":"Bioconjugate Chemistry","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scission-Enhanced Molecular Imaging (SEMI)\",\"authors\":\"Jeremy M. Quintana, Jonathan C. T. Carlson, Ella Scott, Thomas S. C. Ng, Miles A. Miller, Ralph Weissleder\",\"doi\":\"10.1021/acs.bioconjchem.4c00337\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Positron emission tomography (PET) imaging methods have advanced our understanding of human biology, while targeted radiotherapeutic drug treatments are now routinely used clinically. The field is expected to grow considerably based on an expanding repertoire of available affinity ligands, radionuclides, conjugation chemistries, and their FDA approvals. With this increasing use, strategies for dose reduction have become of high interest to protect patients from unnecessary and off-target toxicity. Here, we describe a simple and powerful method, scission-enhanced molecular imaging (SEMI). The technique allows for rapid corporeal elimination of radionuclides once imaging or theranostic treatment is completed and relies on “click-to-release” bioorthogonal linkers.\",\"PeriodicalId\":501658,\"journal\":{\"name\":\"Bioconjugate Chemistry\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioconjugate Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.bioconjchem.4c00337\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioconjugate Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/acs.bioconjchem.4c00337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Positron emission tomography (PET) imaging methods have advanced our understanding of human biology, while targeted radiotherapeutic drug treatments are now routinely used clinically. The field is expected to grow considerably based on an expanding repertoire of available affinity ligands, radionuclides, conjugation chemistries, and their FDA approvals. With this increasing use, strategies for dose reduction have become of high interest to protect patients from unnecessary and off-target toxicity. Here, we describe a simple and powerful method, scission-enhanced molecular imaging (SEMI). The technique allows for rapid corporeal elimination of radionuclides once imaging or theranostic treatment is completed and relies on “click-to-release” bioorthogonal linkers.