{"title":"有限阿德尔上某些弗拉基米洛夫型时变哈密顿的 qp 和 pq 量化的费曼公式","authors":"Roman Urban","doi":"10.1007/s13324-024-00965-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>Q</i> be the <i>d</i>-dimensional space of finite adeles over the algebraic number field <i>K</i> and let <span>\\(P=Q^*\\)</span> be its dual space. For a certain type of Vladimirov type time-dependent Hamiltonian <span>\\(H_V(t):Q\\times P\\rightarrow {\\mathbb {C}}\\)</span> we construct the Feynman formulas for the solution of the Cauchy problem with the Schrödinger operator <img> where the caret operator stands for the <i>qp</i>- or <i>pq</i>-quantization.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-00965-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Feynman formulas for qp- and pq-quantization of some Vladimirov type time-dependent Hamiltonians on finite adeles\",\"authors\":\"Roman Urban\",\"doi\":\"10.1007/s13324-024-00965-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>Q</i> be the <i>d</i>-dimensional space of finite adeles over the algebraic number field <i>K</i> and let <span>\\\\(P=Q^*\\\\)</span> be its dual space. For a certain type of Vladimirov type time-dependent Hamiltonian <span>\\\\(H_V(t):Q\\\\times P\\\\rightarrow {\\\\mathbb {C}}\\\\)</span> we construct the Feynman formulas for the solution of the Cauchy problem with the Schrödinger operator <img> where the caret operator stands for the <i>qp</i>- or <i>pq</i>-quantization.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-024-00965-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00965-4\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00965-4","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
让 Q 是代数数域 K 上的 d 维有限阿德尔空间,让 \(P=Q^*\)是它的对偶空间。对于某类弗拉基米洛夫型时变哈密顿(H_V(t):Q\times P\rightarrow {\mathbb {C}}\),我们用薛定谔算子构造了考希问题解的费曼公式,其中caret算子代表qp-或pq-量子化。
Feynman formulas for qp- and pq-quantization of some Vladimirov type time-dependent Hamiltonians on finite adeles
Let Q be the d-dimensional space of finite adeles over the algebraic number field K and let \(P=Q^*\) be its dual space. For a certain type of Vladimirov type time-dependent Hamiltonian \(H_V(t):Q\times P\rightarrow {\mathbb {C}}\) we construct the Feynman formulas for the solution of the Cauchy problem with the Schrödinger operator where the caret operator stands for the qp- or pq-quantization.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.