{"title":"有限阿德尔上某些弗拉基米洛夫型时变哈密顿的 qp 和 pq 量化的费曼公式","authors":"Roman Urban","doi":"10.1007/s13324-024-00965-4","DOIUrl":null,"url":null,"abstract":"<div><p>Let <i>Q</i> be the <i>d</i>-dimensional space of finite adeles over the algebraic number field <i>K</i> and let <span>\\(P=Q^*\\)</span> be its dual space. For a certain type of Vladimirov type time-dependent Hamiltonian <span>\\(H_V(t):Q\\times P\\rightarrow {\\mathbb {C}}\\)</span> we construct the Feynman formulas for the solution of the Cauchy problem with the Schrödinger operator <img> where the caret operator stands for the <i>qp</i>- or <i>pq</i>-quantization.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 5","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s13324-024-00965-4.pdf","citationCount":"0","resultStr":"{\"title\":\"Feynman formulas for qp- and pq-quantization of some Vladimirov type time-dependent Hamiltonians on finite adeles\",\"authors\":\"Roman Urban\",\"doi\":\"10.1007/s13324-024-00965-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Let <i>Q</i> be the <i>d</i>-dimensional space of finite adeles over the algebraic number field <i>K</i> and let <span>\\\\(P=Q^*\\\\)</span> be its dual space. For a certain type of Vladimirov type time-dependent Hamiltonian <span>\\\\(H_V(t):Q\\\\times P\\\\rightarrow {\\\\mathbb {C}}\\\\)</span> we construct the Feynman formulas for the solution of the Cauchy problem with the Schrödinger operator <img> where the caret operator stands for the <i>qp</i>- or <i>pq</i>-quantization.</p></div>\",\"PeriodicalId\":48860,\"journal\":{\"name\":\"Analysis and Mathematical Physics\",\"volume\":\"14 5\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-08-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s13324-024-00965-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Mathematical Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s13324-024-00965-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00965-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
让 Q 是代数数域 K 上的 d 维有限阿德尔空间,让 \(P=Q^*\)是它的对偶空间。对于某类弗拉基米洛夫型时变哈密顿(H_V(t):Q\times P\rightarrow {\mathbb {C}}\),我们用薛定谔算子构造了考希问题解的费曼公式,其中caret算子代表qp-或pq-量子化。
Feynman formulas for qp- and pq-quantization of some Vladimirov type time-dependent Hamiltonians on finite adeles
Let Q be the d-dimensional space of finite adeles over the algebraic number field K and let \(P=Q^*\) be its dual space. For a certain type of Vladimirov type time-dependent Hamiltonian \(H_V(t):Q\times P\rightarrow {\mathbb {C}}\) we construct the Feynman formulas for the solution of the Cauchy problem with the Schrödinger operator where the caret operator stands for the qp- or pq-quantization.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.