{"title":"耦合希尔费分微分系统的若干存在性结果与圆图上的微分包容","authors":"Lihong Zhang, Xuehui Liu","doi":"10.1007/s12346-024-01117-6","DOIUrl":null,"url":null,"abstract":"<p>Circular network structure is widely used in neural network, image processing, computer vision and bioinformatics. For example, recurrent neural network is a kind of neural network with a circular structure that can be used to process temporal data. It has a wide range of applications in natural language processing, speech recognition, music generation, etc. In this paper, in order to reduce the complexity of the presentation, we study a class of Hilfer-type fractional differential system and differential inclusion with coupled integral boundary value conditions on the simplest circular graph. First, two existence results of Hilfer-type fractional differential system are proved by some known fixed point theorems. Further, the existence results of convex and non-convex multivalued mappings are obtained by using Leray–Schauder nonlinear alternative and Covitz–Nadler fixed point theorem, respectively. At last, two examples are given to verify our theoretical results.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Some Existence Results of Coupled Hilfer Fractional Differential System and Differential Inclusion on the Circular Graph\",\"authors\":\"Lihong Zhang, Xuehui Liu\",\"doi\":\"10.1007/s12346-024-01117-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Circular network structure is widely used in neural network, image processing, computer vision and bioinformatics. For example, recurrent neural network is a kind of neural network with a circular structure that can be used to process temporal data. It has a wide range of applications in natural language processing, speech recognition, music generation, etc. In this paper, in order to reduce the complexity of the presentation, we study a class of Hilfer-type fractional differential system and differential inclusion with coupled integral boundary value conditions on the simplest circular graph. First, two existence results of Hilfer-type fractional differential system are proved by some known fixed point theorems. Further, the existence results of convex and non-convex multivalued mappings are obtained by using Leray–Schauder nonlinear alternative and Covitz–Nadler fixed point theorem, respectively. At last, two examples are given to verify our theoretical results.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01117-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01117-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Some Existence Results of Coupled Hilfer Fractional Differential System and Differential Inclusion on the Circular Graph
Circular network structure is widely used in neural network, image processing, computer vision and bioinformatics. For example, recurrent neural network is a kind of neural network with a circular structure that can be used to process temporal data. It has a wide range of applications in natural language processing, speech recognition, music generation, etc. In this paper, in order to reduce the complexity of the presentation, we study a class of Hilfer-type fractional differential system and differential inclusion with coupled integral boundary value conditions on the simplest circular graph. First, two existence results of Hilfer-type fractional differential system are proved by some known fixed point theorems. Further, the existence results of convex and non-convex multivalued mappings are obtained by using Leray–Schauder nonlinear alternative and Covitz–Nadler fixed point theorem, respectively. At last, two examples are given to verify our theoretical results.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.