强迫非连续振荡器的周期和准周期解法

IF 1.9 3区 数学 Q1 MATHEMATICS
Denghui Li, Xiaoming Zhang, Biliu Zhou
{"title":"强迫非连续振荡器的周期和准周期解法","authors":"Denghui Li, Xiaoming Zhang, Biliu Zhou","doi":"10.1007/s12346-024-01094-w","DOIUrl":null,"url":null,"abstract":"<p>In this paper we consider a forced oscillator with a discontinuous restoring force. By the Aubry–Mather theory we prove that there exist infinitely many periodic and quasiperiodic solutions. The proof relies on analysing the generating function of the system. The approach is applicable to studying the dynamics of more general forced nonsmooth oscillators of Hamiltonian type.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"287 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Periodic and Quasiperiodic Solutions of a Forced Discontinuous Oscillator\",\"authors\":\"Denghui Li, Xiaoming Zhang, Biliu Zhou\",\"doi\":\"10.1007/s12346-024-01094-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper we consider a forced oscillator with a discontinuous restoring force. By the Aubry–Mather theory we prove that there exist infinitely many periodic and quasiperiodic solutions. The proof relies on analysing the generating function of the system. The approach is applicable to studying the dynamics of more general forced nonsmooth oscillators of Hamiltonian type.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"287 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01094-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01094-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们考虑了一个具有不连续恢复力的受迫振荡器。通过奥布里-马瑟理论,我们证明存在无限多的周期和准周期解。该证明依赖于对系统生成函数的分析。这种方法适用于研究更一般的哈密顿型受迫非光滑振荡器的动力学。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Periodic and Quasiperiodic Solutions of a Forced Discontinuous Oscillator

In this paper we consider a forced oscillator with a discontinuous restoring force. By the Aubry–Mather theory we prove that there exist infinitely many periodic and quasiperiodic solutions. The proof relies on analysing the generating function of the system. The approach is applicable to studying the dynamics of more general forced nonsmooth oscillators of Hamiltonian type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信