具有两个 1: $$-q$$ 共振鞍点的立方 $$Z_2$$ 参数系统的可积分性与线性化

IF 1.9 3区 数学 Q1 MATHEMATICS
Xiongkun Wang, Changjian Liu
{"title":"具有两个 1: $$-q$$ 共振鞍点的立方 $$Z_2$$ 参数系统的可积分性与线性化","authors":"Xiongkun Wang, Changjian Liu","doi":"10.1007/s12346-024-01128-3","DOIUrl":null,"url":null,"abstract":"<p>In this article, the integrability and linearizability of a class of cubic <span>\\(Z_2\\)</span>-equivariant systems <span>\\(\\dot{x}=-\\frac{1}{2}x-a_{21}y+\\frac{1}{2}x^3+a_{21}x^2y+a_{12}xy^2+a_{03} y^3,\\, \\dot{y}=(-q-b_{21})y+b_{21}x^2y+b_{12}xy^2+b_{03}y^3, \\)</span> are studied. For any positive integer <i>q</i>, we obtain the first three saddle quantities of the above systems by theoretical analysis. Moreover, for any positive integer <i>q</i>, we derive the necessary and sufficient conditions for the linearizability of the above systems under some assumptions.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"28 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Integrability and Linearizability of Cubic $$Z_2$$ -Equivariant Systems with Two 1: $$-q$$ Resonant Saddle Points\",\"authors\":\"Xiongkun Wang, Changjian Liu\",\"doi\":\"10.1007/s12346-024-01128-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article, the integrability and linearizability of a class of cubic <span>\\\\(Z_2\\\\)</span>-equivariant systems <span>\\\\(\\\\dot{x}=-\\\\frac{1}{2}x-a_{21}y+\\\\frac{1}{2}x^3+a_{21}x^2y+a_{12}xy^2+a_{03} y^3,\\\\, \\\\dot{y}=(-q-b_{21})y+b_{21}x^2y+b_{12}xy^2+b_{03}y^3, \\\\)</span> are studied. For any positive integer <i>q</i>, we obtain the first three saddle quantities of the above systems by theoretical analysis. Moreover, for any positive integer <i>q</i>, we derive the necessary and sufficient conditions for the linearizability of the above systems under some assumptions.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01128-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01128-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了一类立方\(Z_2\)-可变系统 \(\dot{x}=-\frac{1}{2}x-a_{21}y+\frac{1}{2}x^3+a_{21}x^2y+a_{12}xy^2+a_{03} y^3 的可整性和线性化、\, \dot{y}=(-q-b_{21})y+b_{21}x^2y+b_{12}xy^2+b_{03}y^3, \)进行研究。对于任意正整数 q,我们通过理论分析得到了上述系统的前三个鞍量。此外,对于任意正整数 q,我们推导出了上述系统在某些假设条件下线性化的必要条件和充分条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Integrability and Linearizability of Cubic $$Z_2$$ -Equivariant Systems with Two 1: $$-q$$ Resonant Saddle Points

In this article, the integrability and linearizability of a class of cubic \(Z_2\)-equivariant systems \(\dot{x}=-\frac{1}{2}x-a_{21}y+\frac{1}{2}x^3+a_{21}x^2y+a_{12}xy^2+a_{03} y^3,\, \dot{y}=(-q-b_{21})y+b_{21}x^2y+b_{12}xy^2+b_{03}y^3, \) are studied. For any positive integer q, we obtain the first three saddle quantities of the above systems by theoretical analysis. Moreover, for any positive integer q, we derive the necessary and sufficient conditions for the linearizability of the above systems under some assumptions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信