论一类超椭圆阿贝尔积分的切比雪夫性质

IF 1.9 3区 数学 Q1 MATHEMATICS
Yangjian Sun, Shaoqing Wang, Jiazhong Yang
{"title":"论一类超椭圆阿贝尔积分的切比雪夫性质","authors":"Yangjian Sun, Shaoqing Wang, Jiazhong Yang","doi":"10.1007/s12346-024-01136-3","DOIUrl":null,"url":null,"abstract":"<p>This paper aims to demonstrate the Chebyshev property of the linear space <span>\\(V=\\{\\sum _{i=0}^{2}\\alpha _i\\oint _{\\Gamma _h}x^{2i}y\\textrm{d}x:\\alpha _0,\\alpha _1,\\alpha _2\\in \\mathbb {R},\\,h\\in \\Sigma \\}\\)</span> (which is equivalent to that every function of <i>V</i> has at most 2 zeros, counted with multiplicity), with three hyperelliptic Abelian integrals <span>\\(\\oint _{\\Gamma _h}x^{2i}y\\textrm{d}x \\,(i=0,1,2)\\)</span> as generators, where <span>\\(\\Gamma _h\\)</span> is an oval determined by <span>\\(H(x,y)=\\frac{y^2}{2}+\\Psi (x)=h\\)</span>, and <span>\\(\\Psi (x)\\)</span> is an even polynomial of indefinite degree with real non-Morse critical points. As an application, we can obtain the exact upper bound for the number of zeros of a class of hyperelliptic Abelian integrals related to some planar polynomial Hamiltonian systems with two cusps and a nilpotent center.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"183 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Chebyshev Property of a Class of Hyperelliptic Abelian Integrals\",\"authors\":\"Yangjian Sun, Shaoqing Wang, Jiazhong Yang\",\"doi\":\"10.1007/s12346-024-01136-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper aims to demonstrate the Chebyshev property of the linear space <span>\\\\(V=\\\\{\\\\sum _{i=0}^{2}\\\\alpha _i\\\\oint _{\\\\Gamma _h}x^{2i}y\\\\textrm{d}x:\\\\alpha _0,\\\\alpha _1,\\\\alpha _2\\\\in \\\\mathbb {R},\\\\,h\\\\in \\\\Sigma \\\\}\\\\)</span> (which is equivalent to that every function of <i>V</i> has at most 2 zeros, counted with multiplicity), with three hyperelliptic Abelian integrals <span>\\\\(\\\\oint _{\\\\Gamma _h}x^{2i}y\\\\textrm{d}x \\\\,(i=0,1,2)\\\\)</span> as generators, where <span>\\\\(\\\\Gamma _h\\\\)</span> is an oval determined by <span>\\\\(H(x,y)=\\\\frac{y^2}{2}+\\\\Psi (x)=h\\\\)</span>, and <span>\\\\(\\\\Psi (x)\\\\)</span> is an even polynomial of indefinite degree with real non-Morse critical points. As an application, we can obtain the exact upper bound for the number of zeros of a class of hyperelliptic Abelian integrals related to some planar polynomial Hamiltonian systems with two cusps and a nilpotent center.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"183 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01136-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01136-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在证明线性空间(V={sum _{i=0}^{2}\alpha _i\oint _{Gamma _h}x^{2i}y\textrm{d}x:\(which is equivalent to that every function of V has at most 2 zero, counted with multiplicity), with three hyperelliptic Abelian integrals \(\oint _{Gamma _h}x^{2i}y\textrm{d}x、(i=0,1,2))作为生成器,其中 \(\Gamma _h\)是由\(H(x,y)=\frac{y^2}{2}+\Psi (x)=h\)决定的椭圆,并且 \(\Psi (x)\)是具有实非马氏临界点的不定阶偶数多项式。作为应用,我们可以得到一类超椭圆阿贝尔积分的零点个数的精确上界,这一类超椭圆阿贝尔积分与一些具有两个尖顶和一个零potent 中心的平面多项式哈密尔顿系统有关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

On the Chebyshev Property of a Class of Hyperelliptic Abelian Integrals

On the Chebyshev Property of a Class of Hyperelliptic Abelian Integrals

This paper aims to demonstrate the Chebyshev property of the linear space \(V=\{\sum _{i=0}^{2}\alpha _i\oint _{\Gamma _h}x^{2i}y\textrm{d}x:\alpha _0,\alpha _1,\alpha _2\in \mathbb {R},\,h\in \Sigma \}\) (which is equivalent to that every function of V has at most 2 zeros, counted with multiplicity), with three hyperelliptic Abelian integrals \(\oint _{\Gamma _h}x^{2i}y\textrm{d}x \,(i=0,1,2)\) as generators, where \(\Gamma _h\) is an oval determined by \(H(x,y)=\frac{y^2}{2}+\Psi (x)=h\), and \(\Psi (x)\) is an even polynomial of indefinite degree with real non-Morse critical points. As an application, we can obtain the exact upper bound for the number of zeros of a class of hyperelliptic Abelian integrals related to some planar polynomial Hamiltonian systems with two cusps and a nilpotent center.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信