可变形成熟结构细胞群模型的混沌动力学

IF 1.9 3区 数学 Q1 MATHEMATICS
Manal Menchih, Khalid Hilal, Ahmed Kajouni, Mohammad Esmael Samei
{"title":"可变形成熟结构细胞群模型的混沌动力学","authors":"Manal Menchih, Khalid Hilal, Ahmed Kajouni, Mohammad Esmael Samei","doi":"10.1007/s12346-024-01132-7","DOIUrl":null,"url":null,"abstract":"<p>The primary aim of this study is to analyze the chaotic dynamics of a conformable maturity structured cell partial differential equation of order <span>\\(z\\in (0,1)\\)</span>, which extends the classical Lasota equation. To examine the chaotic behavior of our model’s solution, we initially extend certain criteria of linear chaos to conformable calculus. This extension is crucial because the solution of our model does not generate a classical semigroup but rather a <span>\\(c_0\\)</span>-<i>z</i>-semigroup. For the velocity term of our model, <span>\\(B(\\mathfrak {w})=\\mu \\mathfrak {w}\\)</span>, where <span>\\(\\mu \\in \\mathbb {C}\\)</span>, and the term source <span>\\(g(\\mathfrak {w}, \\vartheta (\\textsf{r}, \\mathfrak {w}))\\)</span>, we utilize spectral properties of the <i>z</i>-infinitesimal generator to demonstrate chaotic behavior in the space <span>\\(C(\\textrm{J}_0, \\mathbb {C})\\)</span>, <span>\\(\\textrm{J}_0:=[0,+\\infty )\\)</span>. Furthermore, by employing conformable admissible weight functions and setting <span>\\(B(\\mathfrak {w})=1\\)</span>, we establish chaos in the solution <i>z</i>-semigroup, this time within the space <span>\\(C_{0}(\\textrm{J}_0, \\mathbb {C})\\)</span>.</p>","PeriodicalId":48886,"journal":{"name":"Qualitative Theory of Dynamical Systems","volume":"7 1","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chaotic Dynamics of Conformable Maturity-Structured Cell Population Models\",\"authors\":\"Manal Menchih, Khalid Hilal, Ahmed Kajouni, Mohammad Esmael Samei\",\"doi\":\"10.1007/s12346-024-01132-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The primary aim of this study is to analyze the chaotic dynamics of a conformable maturity structured cell partial differential equation of order <span>\\\\(z\\\\in (0,1)\\\\)</span>, which extends the classical Lasota equation. To examine the chaotic behavior of our model’s solution, we initially extend certain criteria of linear chaos to conformable calculus. This extension is crucial because the solution of our model does not generate a classical semigroup but rather a <span>\\\\(c_0\\\\)</span>-<i>z</i>-semigroup. For the velocity term of our model, <span>\\\\(B(\\\\mathfrak {w})=\\\\mu \\\\mathfrak {w}\\\\)</span>, where <span>\\\\(\\\\mu \\\\in \\\\mathbb {C}\\\\)</span>, and the term source <span>\\\\(g(\\\\mathfrak {w}, \\\\vartheta (\\\\textsf{r}, \\\\mathfrak {w}))\\\\)</span>, we utilize spectral properties of the <i>z</i>-infinitesimal generator to demonstrate chaotic behavior in the space <span>\\\\(C(\\\\textrm{J}_0, \\\\mathbb {C})\\\\)</span>, <span>\\\\(\\\\textrm{J}_0:=[0,+\\\\infty )\\\\)</span>. Furthermore, by employing conformable admissible weight functions and setting <span>\\\\(B(\\\\mathfrak {w})=1\\\\)</span>, we establish chaos in the solution <i>z</i>-semigroup, this time within the space <span>\\\\(C_{0}(\\\\textrm{J}_0, \\\\mathbb {C})\\\\)</span>.</p>\",\"PeriodicalId\":48886,\"journal\":{\"name\":\"Qualitative Theory of Dynamical Systems\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-09-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Qualitative Theory of Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12346-024-01132-7\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Qualitative Theory of Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12346-024-01132-7","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究的主要目的是分析阶数为\(z\in (0,1)\)的保形成熟结构单元偏微分方程的混沌动力学,该方程扩展了经典的拉索塔方程。为了研究模型解的混沌行为,我们首先将线性混沌的某些标准扩展到保角微积分。这一扩展至关重要,因为我们模型的解并不生成经典半群,而是生成一个 \(c_0\)-z 半群。对于我们模型的速度项,(B(\mathfrak {w})=\mu \mathfrak {w}),其中(\mu \in \mathbb {C}),以及项源(g(\mathfrak {w}, \vartheta (\textsf{r}、=[0,+\infty )\).此外,通过使用保角可容许权重函数并设置(B(\mathfrak {w})=1),我们在解的z-半群中建立了混沌,这次是在(C_{0}(\textrm{J}_0, \mathbb {C}))空间中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chaotic Dynamics of Conformable Maturity-Structured Cell Population Models

The primary aim of this study is to analyze the chaotic dynamics of a conformable maturity structured cell partial differential equation of order \(z\in (0,1)\), which extends the classical Lasota equation. To examine the chaotic behavior of our model’s solution, we initially extend certain criteria of linear chaos to conformable calculus. This extension is crucial because the solution of our model does not generate a classical semigroup but rather a \(c_0\)-z-semigroup. For the velocity term of our model, \(B(\mathfrak {w})=\mu \mathfrak {w}\), where \(\mu \in \mathbb {C}\), and the term source \(g(\mathfrak {w}, \vartheta (\textsf{r}, \mathfrak {w}))\), we utilize spectral properties of the z-infinitesimal generator to demonstrate chaotic behavior in the space \(C(\textrm{J}_0, \mathbb {C})\), \(\textrm{J}_0:=[0,+\infty )\). Furthermore, by employing conformable admissible weight functions and setting \(B(\mathfrak {w})=1\), we establish chaos in the solution z-semigroup, this time within the space \(C_{0}(\textrm{J}_0, \mathbb {C})\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Qualitative Theory of Dynamical Systems
Qualitative Theory of Dynamical Systems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.50
自引率
14.30%
发文量
130
期刊介绍: Qualitative Theory of Dynamical Systems (QTDS) publishes high-quality peer-reviewed research articles on the theory and applications of discrete and continuous dynamical systems. The journal addresses mathematicians as well as engineers, physicists, and other scientists who use dynamical systems as valuable research tools. The journal is not interested in numerical results, except if these illustrate theoretical results previously proved.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信