{"title":"亚音速等离子体射流的三维时变特性分析","authors":"Fei Ding, Yanming Liu, Jing Jia, Yixuan Li, Leiqin He, Weifeng Deng","doi":"10.1063/5.0218607","DOIUrl":null,"url":null,"abstract":"The plasma jet wind tunnel, as a ground simulation device for studying the electromagnetic properties of near-space vehicle sheaths, can help people conduct several studies, such as communications and electronic parameter diagnostics. The plasma produced by a plasma generator has time-dependent variations due to the influence of power supply oscillations, turbulence, and other aspects of the device. To accurately define the experimental state of plasma, it is necessary to carefully analyze the three-dimensional (3D) time-varying characteristics of the plasma jet accurately since the distribution is non-uniform. This paper uses volume tomography technology to reconstruct the time series of the 3D emission field of the plasma jet with high-speed cameras. Then, the time–frequency characteristics, overall instability of the emission intensity, central axis position, and shape of the plasma jet are analyzed. The following characteristics are mainly observed: First, the plasma generator ejects plasma intermittently, which then spirals forward away from the nozzle. Second, the intensity, the radius of central axis movement, and the shape of the plasma jet vary with time at the same low frequency. The magnitude of this frequency is mainly related to the rate of change of the jet's air pressure difference with the vacuum chamber. Third, the overall instability of the plasma jet increases along the axial direction away from the nozzle and radially away from the center of the jet.","PeriodicalId":20175,"journal":{"name":"Physics of Plasmas","volume":"25 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of three-dimensional time-varying characteristics of subsonic plasma jet\",\"authors\":\"Fei Ding, Yanming Liu, Jing Jia, Yixuan Li, Leiqin He, Weifeng Deng\",\"doi\":\"10.1063/5.0218607\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The plasma jet wind tunnel, as a ground simulation device for studying the electromagnetic properties of near-space vehicle sheaths, can help people conduct several studies, such as communications and electronic parameter diagnostics. The plasma produced by a plasma generator has time-dependent variations due to the influence of power supply oscillations, turbulence, and other aspects of the device. To accurately define the experimental state of plasma, it is necessary to carefully analyze the three-dimensional (3D) time-varying characteristics of the plasma jet accurately since the distribution is non-uniform. This paper uses volume tomography technology to reconstruct the time series of the 3D emission field of the plasma jet with high-speed cameras. Then, the time–frequency characteristics, overall instability of the emission intensity, central axis position, and shape of the plasma jet are analyzed. The following characteristics are mainly observed: First, the plasma generator ejects plasma intermittently, which then spirals forward away from the nozzle. Second, the intensity, the radius of central axis movement, and the shape of the plasma jet vary with time at the same low frequency. The magnitude of this frequency is mainly related to the rate of change of the jet's air pressure difference with the vacuum chamber. Third, the overall instability of the plasma jet increases along the axial direction away from the nozzle and radially away from the center of the jet.\",\"PeriodicalId\":20175,\"journal\":{\"name\":\"Physics of Plasmas\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics of Plasmas\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0218607\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, FLUIDS & PLASMAS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of Plasmas","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1063/5.0218607","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, FLUIDS & PLASMAS","Score":null,"Total":0}
Analysis of three-dimensional time-varying characteristics of subsonic plasma jet
The plasma jet wind tunnel, as a ground simulation device for studying the electromagnetic properties of near-space vehicle sheaths, can help people conduct several studies, such as communications and electronic parameter diagnostics. The plasma produced by a plasma generator has time-dependent variations due to the influence of power supply oscillations, turbulence, and other aspects of the device. To accurately define the experimental state of plasma, it is necessary to carefully analyze the three-dimensional (3D) time-varying characteristics of the plasma jet accurately since the distribution is non-uniform. This paper uses volume tomography technology to reconstruct the time series of the 3D emission field of the plasma jet with high-speed cameras. Then, the time–frequency characteristics, overall instability of the emission intensity, central axis position, and shape of the plasma jet are analyzed. The following characteristics are mainly observed: First, the plasma generator ejects plasma intermittently, which then spirals forward away from the nozzle. Second, the intensity, the radius of central axis movement, and the shape of the plasma jet vary with time at the same low frequency. The magnitude of this frequency is mainly related to the rate of change of the jet's air pressure difference with the vacuum chamber. Third, the overall instability of the plasma jet increases along the axial direction away from the nozzle and radially away from the center of the jet.
期刊介绍:
Physics of Plasmas (PoP), published by AIP Publishing in cooperation with the APS Division of Plasma Physics, is committed to the publication of original research in all areas of experimental and theoretical plasma physics. PoP publishes comprehensive and in-depth review manuscripts covering important areas of study and Special Topics highlighting new and cutting-edge developments in plasma physics. Every year a special issue publishes the invited and review papers from the most recent meeting of the APS Division of Plasma Physics. PoP covers a broad range of important research in this dynamic field, including:
-Basic plasma phenomena, waves, instabilities
-Nonlinear phenomena, turbulence, transport
-Magnetically confined plasmas, heating, confinement
-Inertially confined plasmas, high-energy density plasma science, warm dense matter
-Ionospheric, solar-system, and astrophysical plasmas
-Lasers, particle beams, accelerators, radiation generation
-Radiation emission, absorption, and transport
-Low-temperature plasmas, plasma applications, plasma sources, sheaths
-Dusty plasmas