朝鲜半岛中西部朱门岛岩浆镍铜硫化物和热液锌矿化的初步证据

IF 1 4区 地球科学 Q4 GEOSCIENCES, MULTIDISCIPLINARY
Heonkyung Im, Seok-Jun Yang, Dongbok Shin, Ji-Hyun Lee, Eui-Jun Kim
{"title":"朝鲜半岛中西部朱门岛岩浆镍铜硫化物和热液锌矿化的初步证据","authors":"Heonkyung Im, Seok-Jun Yang, Dongbok Shin, Ji-Hyun Lee, Eui-Jun Kim","doi":"10.1007/s12303-024-0039-8","DOIUrl":null,"url":null,"abstract":"<p>Jumun Island is tectonostratigraphically situated on the marginal zone of the Gyeonggi Massif. The Massif is in contact with the southwestern margin of the Imjingang Belt and adjacent to Boreum Island, where ultramafic rock with magmatic Fe-Ti oxide deposits occurs. The northwest of Jumun Island, facing the Boreum ultramafic rock with Fe-Ti oxide ores, is composed of Precambrian Boreumdo schists containing a few magmatic intrusives, the exact ages of which are unknown. In Jumun, the ultramafic intrusion (Mg# = 75), which is confined to a narrow zone along the seaside, mainly consists of olivine (Fo = 81–82), amphibole (magnesio-horn-blende to tremolite), and phlogopite. The olivine is strongly serpentinized and encompassed by amphibole and phlogopite. The Ni-Cu sulfide mineralization found in the ultramafic rock is weak but has a typical assemblage of pyrrhotite-pentlandite-chalcopyrite with a small amount of magnetite. Notably, the Ni-Cu sulfides are closely associated with amphibole and phlogopite and are found in the fractures and interstitials of the olivine grains. The pyrrhotite (n = 2) and chalcopyrite (n = 1) are compositionally close to pure samples, whereas the pentlandite (n = 2) is characterized by enrichment with Co (up to 6.9 wt%). The sphalerite-bearing quartz vein cuts across the Precambrian gneissic rock and strikes N70 °W with an 80 °NE dip. This vein, which is traceable to a limited extent and approximately 40 cm wide, shows mineralogical zonation in the inward direction from pyrite to sphalerite-dominant. Consisting of sphalerite, pyrite, quartz, and chlorite with minor amounts of chalcopyrite, pyrrhotite, and pentlandite, it is composed of 9.56 wt% Zn with &lt; 1.0 wt% As, Co, Cu, In, Mn, Ni, and Pb and below-detection limits (0.001 ppm) amounts of Bi, Ge, Mo, Se, Sb, Te, and W. Sphalerite, a principal ore mineral, is coarse-grained and reddish-brown and is composed of 57.3–58.8 wt% ZnS, 8.0–9.2 wt% FeS, and 32.0–32.4 wt% S with small amounts of Cu, Mn, As, and Cd. The recently discovered Ni-Cu sulfide mineralization and quartz vein with sphalerite, along with the linear array of magmatic Fe-Ti oxide deposits, provide conclusive evidence that the marginal zone of the Gyeonggi Massif may be a geologically favorable area for the formation of magmatic and magmatic-hydrothermal deposits. For exploration purposes, it is necessary to contextualize the source, tectonic setting, and magmatic evolution.</p>","PeriodicalId":12659,"journal":{"name":"Geosciences Journal","volume":"1 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First evidence of magmatic Ni-Cu sulfides and hydrothermal Zn mineralization in Jumun Island, central-western Korean peninsula\",\"authors\":\"Heonkyung Im, Seok-Jun Yang, Dongbok Shin, Ji-Hyun Lee, Eui-Jun Kim\",\"doi\":\"10.1007/s12303-024-0039-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Jumun Island is tectonostratigraphically situated on the marginal zone of the Gyeonggi Massif. The Massif is in contact with the southwestern margin of the Imjingang Belt and adjacent to Boreum Island, where ultramafic rock with magmatic Fe-Ti oxide deposits occurs. The northwest of Jumun Island, facing the Boreum ultramafic rock with Fe-Ti oxide ores, is composed of Precambrian Boreumdo schists containing a few magmatic intrusives, the exact ages of which are unknown. In Jumun, the ultramafic intrusion (Mg# = 75), which is confined to a narrow zone along the seaside, mainly consists of olivine (Fo = 81–82), amphibole (magnesio-horn-blende to tremolite), and phlogopite. The olivine is strongly serpentinized and encompassed by amphibole and phlogopite. The Ni-Cu sulfide mineralization found in the ultramafic rock is weak but has a typical assemblage of pyrrhotite-pentlandite-chalcopyrite with a small amount of magnetite. Notably, the Ni-Cu sulfides are closely associated with amphibole and phlogopite and are found in the fractures and interstitials of the olivine grains. The pyrrhotite (n = 2) and chalcopyrite (n = 1) are compositionally close to pure samples, whereas the pentlandite (n = 2) is characterized by enrichment with Co (up to 6.9 wt%). The sphalerite-bearing quartz vein cuts across the Precambrian gneissic rock and strikes N70 °W with an 80 °NE dip. This vein, which is traceable to a limited extent and approximately 40 cm wide, shows mineralogical zonation in the inward direction from pyrite to sphalerite-dominant. Consisting of sphalerite, pyrite, quartz, and chlorite with minor amounts of chalcopyrite, pyrrhotite, and pentlandite, it is composed of 9.56 wt% Zn with &lt; 1.0 wt% As, Co, Cu, In, Mn, Ni, and Pb and below-detection limits (0.001 ppm) amounts of Bi, Ge, Mo, Se, Sb, Te, and W. Sphalerite, a principal ore mineral, is coarse-grained and reddish-brown and is composed of 57.3–58.8 wt% ZnS, 8.0–9.2 wt% FeS, and 32.0–32.4 wt% S with small amounts of Cu, Mn, As, and Cd. The recently discovered Ni-Cu sulfide mineralization and quartz vein with sphalerite, along with the linear array of magmatic Fe-Ti oxide deposits, provide conclusive evidence that the marginal zone of the Gyeonggi Massif may be a geologically favorable area for the formation of magmatic and magmatic-hydrothermal deposits. For exploration purposes, it is necessary to contextualize the source, tectonic setting, and magmatic evolution.</p>\",\"PeriodicalId\":12659,\"journal\":{\"name\":\"Geosciences Journal\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geosciences Journal\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1007/s12303-024-0039-8\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geosciences Journal","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s12303-024-0039-8","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

朱门岛在构造地层学上位于京畿地块的边缘地带。京畿地块与临津江带西南缘相接,毗邻伯伦岛,伯伦岛上有含岩浆铁钛氧化物矿床的超基性岩。朱门岛的西北部与含氧化铁钛矿的伯伦超基性岩对峙,由前寒武纪伯伦多片岩组成,其中含有少量岩浆侵入体,其确切年龄尚不清楚。在朱蒙,超基性侵入体(Mg# = 75)仅限于海边的一个狭长地带,主要由橄榄石(Fo = 81-82)、闪石(菱镁角闪石至透闪石)和辉绿岩组成。橄榄石被强烈蛇纹石化,并被闪石和辉石包裹。在超基性岩中发现的镍铜硫化物矿化较弱,但具有黄铁矿-闪长岩-黄铜矿的典型组合,并含有少量磁铁矿。值得注意的是,镍铜硫化物与闪长岩和辉长岩密切相关,存在于橄榄石晶粒的裂隙和间隙中。黄铁矿(n = 2)和黄铜矿(n = 1)在成分上接近于纯净样品,而辉铜矿(n = 2)则富含 Co(高达 6.9 wt%)。含闪锌矿的石英矿脉穿过前寒武纪片麻岩,走向为 N70°W,倾角为 80°NE。该矿脉可追踪的范围有限,宽度约为 40 厘米,其矿物学分带从黄铁矿为主向内延伸。该矿脉由闪锌矿、黄铁矿、石英和绿泥石组成,并含有少量黄铜矿、黄铁矿和辉铜矿,其中锌含量为 9.56 wt%,砷、钴、铜、铟、锰、镍和铅含量为 1.0 wt%,铋和镓含量低于检测限(0.001 ppm)。主要矿石矿物闪锌矿呈粗粒红褐色,由 57.3-58.8 wt% 的 ZnS、8.0-9.2 wt% 的 FeS 和 32.0-32.4 wt% 的 S 以及少量的 Cu、Mn、As 和 Cd 组成。最近发现的镍铜硫化物矿化和含闪锌矿的石英脉,以及岩浆铁钛氧化物矿床的线性排列,提供了确凿的证据,证明京畿道山丘的边缘地带可能是形成岩浆矿床和岩浆热液矿床的有利地质区域。为了勘探目的,有必要对岩浆源、构造环境和岩浆演化进行背景分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First evidence of magmatic Ni-Cu sulfides and hydrothermal Zn mineralization in Jumun Island, central-western Korean peninsula

Jumun Island is tectonostratigraphically situated on the marginal zone of the Gyeonggi Massif. The Massif is in contact with the southwestern margin of the Imjingang Belt and adjacent to Boreum Island, where ultramafic rock with magmatic Fe-Ti oxide deposits occurs. The northwest of Jumun Island, facing the Boreum ultramafic rock with Fe-Ti oxide ores, is composed of Precambrian Boreumdo schists containing a few magmatic intrusives, the exact ages of which are unknown. In Jumun, the ultramafic intrusion (Mg# = 75), which is confined to a narrow zone along the seaside, mainly consists of olivine (Fo = 81–82), amphibole (magnesio-horn-blende to tremolite), and phlogopite. The olivine is strongly serpentinized and encompassed by amphibole and phlogopite. The Ni-Cu sulfide mineralization found in the ultramafic rock is weak but has a typical assemblage of pyrrhotite-pentlandite-chalcopyrite with a small amount of magnetite. Notably, the Ni-Cu sulfides are closely associated with amphibole and phlogopite and are found in the fractures and interstitials of the olivine grains. The pyrrhotite (n = 2) and chalcopyrite (n = 1) are compositionally close to pure samples, whereas the pentlandite (n = 2) is characterized by enrichment with Co (up to 6.9 wt%). The sphalerite-bearing quartz vein cuts across the Precambrian gneissic rock and strikes N70 °W with an 80 °NE dip. This vein, which is traceable to a limited extent and approximately 40 cm wide, shows mineralogical zonation in the inward direction from pyrite to sphalerite-dominant. Consisting of sphalerite, pyrite, quartz, and chlorite with minor amounts of chalcopyrite, pyrrhotite, and pentlandite, it is composed of 9.56 wt% Zn with < 1.0 wt% As, Co, Cu, In, Mn, Ni, and Pb and below-detection limits (0.001 ppm) amounts of Bi, Ge, Mo, Se, Sb, Te, and W. Sphalerite, a principal ore mineral, is coarse-grained and reddish-brown and is composed of 57.3–58.8 wt% ZnS, 8.0–9.2 wt% FeS, and 32.0–32.4 wt% S with small amounts of Cu, Mn, As, and Cd. The recently discovered Ni-Cu sulfide mineralization and quartz vein with sphalerite, along with the linear array of magmatic Fe-Ti oxide deposits, provide conclusive evidence that the marginal zone of the Gyeonggi Massif may be a geologically favorable area for the formation of magmatic and magmatic-hydrothermal deposits. For exploration purposes, it is necessary to contextualize the source, tectonic setting, and magmatic evolution.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Geosciences Journal
Geosciences Journal 地学-地球科学综合
CiteScore
2.70
自引率
8.30%
发文量
33
审稿时长
6 months
期刊介绍: Geosciences Journal opens a new era for the publication of geoscientific research articles in English, covering geology, geophysics, geochemistry, paleontology, structural geology, mineralogy, petrology, stratigraphy, sedimentology, environmental geology, economic geology, petroleum geology, hydrogeology, remote sensing and planetary geology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信