高斯服装:从多视角视频中重建具有逼真外观的仿真服装

Boxiang Rong, Artur Grigorev, Wenbo Wang, Michael J. Black, Bernhard Thomaszewski, Christina Tsalicoglou, Otmar Hilliges
{"title":"高斯服装:从多视角视频中重建具有逼真外观的仿真服装","authors":"Boxiang Rong, Artur Grigorev, Wenbo Wang, Michael J. Black, Bernhard Thomaszewski, Christina Tsalicoglou, Otmar Hilliges","doi":"arxiv-2409.08189","DOIUrl":null,"url":null,"abstract":"We introduce Gaussian Garments, a novel approach for reconstructing realistic\nsimulation-ready garment assets from multi-view videos. Our method represents\ngarments with a combination of a 3D mesh and a Gaussian texture that encodes\nboth the color and high-frequency surface details. This representation enables\naccurate registration of garment geometries to multi-view videos and helps\ndisentangle albedo textures from lighting effects. Furthermore, we demonstrate\nhow a pre-trained graph neural network (GNN) can be fine-tuned to replicate the\nreal behavior of each garment. The reconstructed Gaussian Garments can be\nautomatically combined into multi-garment outfits and animated with the\nfine-tuned GNN.","PeriodicalId":501174,"journal":{"name":"arXiv - CS - Graphics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gaussian Garments: Reconstructing Simulation-Ready Clothing with Photorealistic Appearance from Multi-View Video\",\"authors\":\"Boxiang Rong, Artur Grigorev, Wenbo Wang, Michael J. Black, Bernhard Thomaszewski, Christina Tsalicoglou, Otmar Hilliges\",\"doi\":\"arxiv-2409.08189\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We introduce Gaussian Garments, a novel approach for reconstructing realistic\\nsimulation-ready garment assets from multi-view videos. Our method represents\\ngarments with a combination of a 3D mesh and a Gaussian texture that encodes\\nboth the color and high-frequency surface details. This representation enables\\naccurate registration of garment geometries to multi-view videos and helps\\ndisentangle albedo textures from lighting effects. Furthermore, we demonstrate\\nhow a pre-trained graph neural network (GNN) can be fine-tuned to replicate the\\nreal behavior of each garment. The reconstructed Gaussian Garments can be\\nautomatically combined into multi-garment outfits and animated with the\\nfine-tuned GNN.\",\"PeriodicalId\":501174,\"journal\":{\"name\":\"arXiv - CS - Graphics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Graphics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.08189\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Graphics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了高斯服装,这是一种从多视角视频中重建可用于仿真的服装资产的新方法。我们的方法结合三维网格和高斯纹理来表示服装,高斯纹理对颜色和高频表面细节都进行了编码。这种表示方法能将服装几何图形准确地注册到多视角视频中,并有助于将反照率纹理与光照效果区分开来。此外,我们还演示了如何对预先训练好的图神经网络(GNN)进行微调,以复制每件服装的真实行为。重建后的高斯服装可以美观地组合成多件服装,并通过微调后的 GNN 制作动画。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gaussian Garments: Reconstructing Simulation-Ready Clothing with Photorealistic Appearance from Multi-View Video
We introduce Gaussian Garments, a novel approach for reconstructing realistic simulation-ready garment assets from multi-view videos. Our method represents garments with a combination of a 3D mesh and a Gaussian texture that encodes both the color and high-frequency surface details. This representation enables accurate registration of garment geometries to multi-view videos and helps disentangle albedo textures from lighting effects. Furthermore, we demonstrate how a pre-trained graph neural network (GNN) can be fine-tuned to replicate the real behavior of each garment. The reconstructed Gaussian Garments can be automatically combined into multi-garment outfits and animated with the fine-tuned GNN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信