{"title":"多重网络攻击下开关 T-S 模糊系统的动态事件触发 H∞ 控制","authors":"Xiangtong Tan, Xiehuan Li, Guangdeng Zong","doi":"10.1002/acs.3901","DOIUrl":null,"url":null,"abstract":"SummaryThis article studies the dynamic event‐triggered control problem for switched Takagi‐Sugeno (T‐S) fuzzy systems against multiple cyber attacks. A new multiple cyber attack model is established by considering random false data injection attacks and aperiodic denial‐of‐service attacks. Then, to further efficiently utilize network communication resources, a dynamic event‐triggered mechanism (ETM), which includes a nonnegative dynamic variable, is constructed. Furthermore, the time‐delay switched T‐S fuzzy system considering dynamic ETM and multiple cyber attacks is derived by utilizing model transformation methods. Moreover, sufficient conditions for globally asymptotically stability and performance are derived by utilizing multiple Lyapunov functions and average dwell time method. Finally, an example is provided to validate the effectiveness of dynamic ETM.","PeriodicalId":50347,"journal":{"name":"International Journal of Adaptive Control and Signal Processing","volume":"4 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic event‐triggered H∞ control for switched T‐S fuzzy systems under multiple cyber attacks\",\"authors\":\"Xiangtong Tan, Xiehuan Li, Guangdeng Zong\",\"doi\":\"10.1002/acs.3901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SummaryThis article studies the dynamic event‐triggered control problem for switched Takagi‐Sugeno (T‐S) fuzzy systems against multiple cyber attacks. A new multiple cyber attack model is established by considering random false data injection attacks and aperiodic denial‐of‐service attacks. Then, to further efficiently utilize network communication resources, a dynamic event‐triggered mechanism (ETM), which includes a nonnegative dynamic variable, is constructed. Furthermore, the time‐delay switched T‐S fuzzy system considering dynamic ETM and multiple cyber attacks is derived by utilizing model transformation methods. Moreover, sufficient conditions for globally asymptotically stability and performance are derived by utilizing multiple Lyapunov functions and average dwell time method. Finally, an example is provided to validate the effectiveness of dynamic ETM.\",\"PeriodicalId\":50347,\"journal\":{\"name\":\"International Journal of Adaptive Control and Signal Processing\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Adaptive Control and Signal Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1002/acs.3901\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Adaptive Control and Signal Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/acs.3901","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Dynamic event‐triggered H∞ control for switched T‐S fuzzy systems under multiple cyber attacks
SummaryThis article studies the dynamic event‐triggered control problem for switched Takagi‐Sugeno (T‐S) fuzzy systems against multiple cyber attacks. A new multiple cyber attack model is established by considering random false data injection attacks and aperiodic denial‐of‐service attacks. Then, to further efficiently utilize network communication resources, a dynamic event‐triggered mechanism (ETM), which includes a nonnegative dynamic variable, is constructed. Furthermore, the time‐delay switched T‐S fuzzy system considering dynamic ETM and multiple cyber attacks is derived by utilizing model transformation methods. Moreover, sufficient conditions for globally asymptotically stability and performance are derived by utilizing multiple Lyapunov functions and average dwell time method. Finally, an example is provided to validate the effectiveness of dynamic ETM.
期刊介绍:
The International Journal of Adaptive Control and Signal Processing is concerned with the design, synthesis and application of estimators or controllers where adaptive features are needed to cope with uncertainties.Papers on signal processing should also have some relevance to adaptive systems. The journal focus is on model based control design approaches rather than heuristic or rule based control design methods. All papers will be expected to include significant novel material.
Both the theory and application of adaptive systems and system identification are areas of interest. Papers on applications can include problems in the implementation of algorithms for real time signal processing and control. The stability, convergence, robustness and numerical aspects of adaptive algorithms are also suitable topics. The related subjects of controller tuning, filtering, networks and switching theory are also of interest. Principal areas to be addressed include:
Auto-Tuning, Self-Tuning and Model Reference Adaptive Controllers
Nonlinear, Robust and Intelligent Adaptive Controllers
Linear and Nonlinear Multivariable System Identification and Estimation
Identification of Linear Parameter Varying, Distributed and Hybrid Systems
Multiple Model Adaptive Control
Adaptive Signal processing Theory and Algorithms
Adaptation in Multi-Agent Systems
Condition Monitoring Systems
Fault Detection and Isolation Methods
Fault Detection and Isolation Methods
Fault-Tolerant Control (system supervision and diagnosis)
Learning Systems and Adaptive Modelling
Real Time Algorithms for Adaptive Signal Processing and Control
Adaptive Signal Processing and Control Applications
Adaptive Cloud Architectures and Networking
Adaptive Mechanisms for Internet of Things
Adaptive Sliding Mode Control.