紧凑树理想的不同覆盖数

IF 0.4 4区 数学 Q4 LOGIC
Jelle Mathis Kuiper, Otmar Spinas
{"title":"紧凑树理想的不同覆盖数","authors":"Jelle Mathis Kuiper, Otmar Spinas","doi":"10.1007/s00153-024-00933-6","DOIUrl":null,"url":null,"abstract":"<p>We investigate the covering numbers of some ideals on <span>\\({^{\\omega }}{2}{}\\)</span> associated with tree forcings. We prove that the covering of the Sacks ideal remains small in the Silver and uniform Sacks model, respectively, and that the coverings of the uniform Sacks ideal and the Mycielski ideal, <span>\\({\\mathfrak {C}_{2}}\\)</span>, remain small in the Sacks model.</p>","PeriodicalId":8350,"journal":{"name":"Archive for Mathematical Logic","volume":"9 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Different covering numbers of compact tree ideals\",\"authors\":\"Jelle Mathis Kuiper, Otmar Spinas\",\"doi\":\"10.1007/s00153-024-00933-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the covering numbers of some ideals on <span>\\\\({^{\\\\omega }}{2}{}\\\\)</span> associated with tree forcings. We prove that the covering of the Sacks ideal remains small in the Silver and uniform Sacks model, respectively, and that the coverings of the uniform Sacks ideal and the Mycielski ideal, <span>\\\\({\\\\mathfrak {C}_{2}}\\\\)</span>, remain small in the Sacks model.</p>\",\"PeriodicalId\":8350,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00153-024-00933-6\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00153-024-00933-6","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了 \({^{\omega }}{2}{}\) 上与树强制相关的一些理想的覆盖数。我们分别证明了萨克斯理想的覆盖数在 Silver 模型和统一萨克斯模型中仍然很小,并且证明了统一萨克斯理想和 Mycielski 理想、\({\mathfrak {C}_{2}}\) 的覆盖数在萨克斯模型中仍然很小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Different covering numbers of compact tree ideals

We investigate the covering numbers of some ideals on \({^{\omega }}{2}{}\) associated with tree forcings. We prove that the covering of the Sacks ideal remains small in the Silver and uniform Sacks model, respectively, and that the coverings of the uniform Sacks ideal and the Mycielski ideal, \({\mathfrak {C}_{2}}\), remain small in the Sacks model.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
45
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信