论构造等级的分散线性阶的分类性

IF 0.4 4区 数学 Q4 LOGIC
Andrey Frolov, Maxim Zubkov
{"title":"论构造等级的分散线性阶的分类性","authors":"Andrey Frolov, Maxim Zubkov","doi":"10.1007/s00153-024-00934-5","DOIUrl":null,"url":null,"abstract":"<p>In this article we investigate the complexity of isomorphisms between scattered linear orders of constructive ranks. We give the general upper bound and prove that this bound is sharp. Also, we construct examples showing that the categoricity level of a given scattered linear order can be an arbitrary ordinal from 3 to the upper bound, except for the case when the ordinal is the successor of a limit ordinal. The existence question of the scattered linear orders whose categoricity level equals the successor of a limit ordinal is still open.\n</p>","PeriodicalId":8350,"journal":{"name":"Archive for Mathematical Logic","volume":"285 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On categoricity of scattered linear orders of constructive ranks\",\"authors\":\"Andrey Frolov, Maxim Zubkov\",\"doi\":\"10.1007/s00153-024-00934-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this article we investigate the complexity of isomorphisms between scattered linear orders of constructive ranks. We give the general upper bound and prove that this bound is sharp. Also, we construct examples showing that the categoricity level of a given scattered linear order can be an arbitrary ordinal from 3 to the upper bound, except for the case when the ordinal is the successor of a limit ordinal. The existence question of the scattered linear orders whose categoricity level equals the successor of a limit ordinal is still open.\\n</p>\",\"PeriodicalId\":8350,\"journal\":{\"name\":\"Archive for Mathematical Logic\",\"volume\":\"285 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2024-08-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Archive for Mathematical Logic\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00153-024-00934-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archive for Mathematical Logic","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00153-024-00934-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了构造等级的分散线性阶之间同构的复杂性。我们给出了一般上限,并证明这个上限是尖锐的。此外,我们还构造了一些例子,表明给定的散点线性阶的分类等级可以是从 3 到上界的任意序数,但序数是极限序数的后继序数的情况除外。分类水平等于极限序的后继序的散点线性序的存在性问题仍未解决。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On categoricity of scattered linear orders of constructive ranks

In this article we investigate the complexity of isomorphisms between scattered linear orders of constructive ranks. We give the general upper bound and prove that this bound is sharp. Also, we construct examples showing that the categoricity level of a given scattered linear order can be an arbitrary ordinal from 3 to the upper bound, except for the case when the ordinal is the successor of a limit ordinal. The existence question of the scattered linear orders whose categoricity level equals the successor of a limit ordinal is still open.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
45
期刊介绍: The journal publishes research papers and occasionally surveys or expositions on mathematical logic. Contributions are also welcomed from other related areas, such as theoretical computer science or philosophy, as long as the methods of mathematical logic play a significant role. The journal therefore addresses logicians and mathematicians, computer scientists, and philosophers who are interested in the applications of mathematical logic in their own field, as well as its interactions with other areas of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信