Demazure 模块的简化展示和嵌入

IF 0.8 2区 数学 Q2 MATHEMATICS
Deniz Kus, Rajendran Venkatesh
{"title":"Demazure 模块的简化展示和嵌入","authors":"Deniz Kus, Rajendran Venkatesh","doi":"10.1007/s11856-024-2652-7","DOIUrl":null,"url":null,"abstract":"<p>For an untwisted affine Lie algebra we prove an embedding of any higher level Demazure module into a tensor product of lower level Demazure modules (e.g., level one in type A) which becomes in the limit (for anti-dominant weights) the well-known embedding of finite-dimensional irreducible modules of the underlying simple Lie algebra into the tensor product of fundamental modules. To achieve this goal, we first simplify the presentation of these modules extending the results of [13] in the <span>\\({\\mathfrak g}\\)</span>-stable case. As an application, we propose a crystal theoretic way to find classical decompositions with respect to a maximal semi-simple Lie subalgebra by identifying the Demazure crystal as a connected component in the corresponding tensor product of crystals.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simplified presentations and embeddings of Demazure modules\",\"authors\":\"Deniz Kus, Rajendran Venkatesh\",\"doi\":\"10.1007/s11856-024-2652-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For an untwisted affine Lie algebra we prove an embedding of any higher level Demazure module into a tensor product of lower level Demazure modules (e.g., level one in type A) which becomes in the limit (for anti-dominant weights) the well-known embedding of finite-dimensional irreducible modules of the underlying simple Lie algebra into the tensor product of fundamental modules. To achieve this goal, we first simplify the presentation of these modules extending the results of [13] in the <span>\\\\({\\\\mathfrak g}\\\\)</span>-stable case. As an application, we propose a crystal theoretic way to find classical decompositions with respect to a maximal semi-simple Lie subalgebra by identifying the Demazure crystal as a connected component in the corresponding tensor product of crystals.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2652-7\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2652-7","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

对于非扭曲仿射李代数,我们证明了任何高层德马祖尔模块嵌入低层德马祖尔模块(例如 A 型中的第一层)的张量积,这在极限中(对于反主导权重)成为众所周知的底层简单李代数的有限维不可还原模块嵌入基本模块的张量积。为了实现这个目标,我们首先简化了这些模块的表述,扩展了 [13] 在 \({\mathfrak g}\) - 稳定情况下的结果。作为应用,我们提出了一种晶体理论方法,通过将 Demazure 晶体识别为相应晶体张量积中的连通成分,找到关于最大半简Lie 子代数的经典分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simplified presentations and embeddings of Demazure modules

For an untwisted affine Lie algebra we prove an embedding of any higher level Demazure module into a tensor product of lower level Demazure modules (e.g., level one in type A) which becomes in the limit (for anti-dominant weights) the well-known embedding of finite-dimensional irreducible modules of the underlying simple Lie algebra into the tensor product of fundamental modules. To achieve this goal, we first simplify the presentation of these modules extending the results of [13] in the \({\mathfrak g}\)-stable case. As an application, we propose a crystal theoretic way to find classical decompositions with respect to a maximal semi-simple Lie subalgebra by identifying the Demazure crystal as a connected component in the corresponding tensor product of crystals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信