非正曲线表面上角环流的唯一遍历性

IF 0.8 2区 数学 Q2 MATHEMATICS
Sergi Burniol Clotet
{"title":"非正曲线表面上角环流的唯一遍历性","authors":"Sergi Burniol Clotet","doi":"10.1007/s11856-024-2662-5","DOIUrl":null,"url":null,"abstract":"<p>On the unit tangent bundle of a nonflat compact nonpositively curved surface, we prove that there is a unique probability Borel measure invariant by a horocyclic flow which gives full measure to the set of rank 1 vectors recurrent by the geodesic flow. If we assume in addition that the surface has no flat strips, we show that the horocyclic flow is uniquely ergodic. These results are valid for any parametrization of the horocyclic flow.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unique ergodicity of horocyclic flows on nonpositively curved surfaces\",\"authors\":\"Sergi Burniol Clotet\",\"doi\":\"10.1007/s11856-024-2662-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>On the unit tangent bundle of a nonflat compact nonpositively curved surface, we prove that there is a unique probability Borel measure invariant by a horocyclic flow which gives full measure to the set of rank 1 vectors recurrent by the geodesic flow. If we assume in addition that the surface has no flat strips, we show that the horocyclic flow is uniquely ergodic. These results are valid for any parametrization of the horocyclic flow.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2662-5\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2662-5","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在非平面紧凑非正弯曲表面的单位切线束上,我们证明了有一个唯一的概率玻尔量不变的角环流,该角环流给出了由大地流递归的秩 1 向量集的全量。此外,如果我们假设曲面没有平面条带,我们将证明角环流是唯一遍历的。这些结果对角环流的任何参数化都有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unique ergodicity of horocyclic flows on nonpositively curved surfaces

On the unit tangent bundle of a nonflat compact nonpositively curved surface, we prove that there is a unique probability Borel measure invariant by a horocyclic flow which gives full measure to the set of rank 1 vectors recurrent by the geodesic flow. If we assume in addition that the surface has no flat strips, we show that the horocyclic flow is uniquely ergodic. These results are valid for any parametrization of the horocyclic flow.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
90
审稿时长
6 months
期刊介绍: The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信