近似波利亚-伽马吉布斯采样器的光谱间隙

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Bryant Davis, James P. Hobert
{"title":"近似波利亚-伽马吉布斯采样器的光谱间隙","authors":"Bryant Davis, James P. Hobert","doi":"10.1007/s11009-024-10104-y","DOIUrl":null,"url":null,"abstract":"<p>The self-adjoint, positive Markov operator defined by the Pólya-Gamma Gibbs sampler (under a proper normal prior) is shown to be trace-class, which implies that all non-zero elements of its spectrum are eigenvalues. Consequently, the spectral gap is <span>\\(1-\\lambda _*\\)</span>, where <span>\\(\\lambda _* \\in [0,1)\\)</span> is the second largest eigenvalue. A method of constructing an asymptotically valid confidence interval for an upper bound on <span>\\(\\lambda _*\\)</span> is developed by adapting the classical Monte Carlo technique of Qin et al. (Electron J Stat 13:1790–1812, 2019) to the Pólya-Gamma Gibbs sampler. The results are illustrated using the German credit data. It is also shown that, in general, uniform ergodicity does not imply the trace-class property, nor does the trace-class property imply uniform ergodicity.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Approximating the Spectral Gap of the Pólya-Gamma Gibbs Sampler\",\"authors\":\"Bryant Davis, James P. Hobert\",\"doi\":\"10.1007/s11009-024-10104-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The self-adjoint, positive Markov operator defined by the Pólya-Gamma Gibbs sampler (under a proper normal prior) is shown to be trace-class, which implies that all non-zero elements of its spectrum are eigenvalues. Consequently, the spectral gap is <span>\\\\(1-\\\\lambda _*\\\\)</span>, where <span>\\\\(\\\\lambda _* \\\\in [0,1)\\\\)</span> is the second largest eigenvalue. A method of constructing an asymptotically valid confidence interval for an upper bound on <span>\\\\(\\\\lambda _*\\\\)</span> is developed by adapting the classical Monte Carlo technique of Qin et al. (Electron J Stat 13:1790–1812, 2019) to the Pólya-Gamma Gibbs sampler. The results are illustrated using the German credit data. It is also shown that, in general, uniform ergodicity does not imply the trace-class property, nor does the trace-class property imply uniform ergodicity.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-024-10104-y\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10104-y","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由 Pólya-Gamma Gibbs 采样器(在适当的正态先验下)定义的自相关正马尔可夫算子被证明是迹类的,这意味着其谱的所有非零元素都是特征值。因此,频谱差距为(1-\lambda _*\),其中\(\lambda _* \in [0,1)\)是第二大特征值。通过将 Qin 等人的经典蒙特卡罗技术(Electron J Stat 13:1790-1812, 2019)应用于 Pólya-Gamma Gibbs 采样器,开发了一种为 \(\lambda _*\) 上界构建渐近有效置信区间的方法。使用德国信贷数据对结果进行了说明。研究还表明,一般来说,均匀遍历性并不意味着迹类属性,迹类属性也不意味着均匀遍历性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Approximating the Spectral Gap of the Pólya-Gamma Gibbs Sampler

Approximating the Spectral Gap of the Pólya-Gamma Gibbs Sampler

The self-adjoint, positive Markov operator defined by the Pólya-Gamma Gibbs sampler (under a proper normal prior) is shown to be trace-class, which implies that all non-zero elements of its spectrum are eigenvalues. Consequently, the spectral gap is \(1-\lambda _*\), where \(\lambda _* \in [0,1)\) is the second largest eigenvalue. A method of constructing an asymptotically valid confidence interval for an upper bound on \(\lambda _*\) is developed by adapting the classical Monte Carlo technique of Qin et al. (Electron J Stat 13:1790–1812, 2019) to the Pólya-Gamma Gibbs sampler. The results are illustrated using the German credit data. It is also shown that, in general, uniform ergodicity does not imply the trace-class property, nor does the trace-class property imply uniform ergodicity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信