亚线性期望下扩展负相关随机变量加权和的强收敛特性及其统计应用

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Liangxue Li, Xiaoqian Zheng, Haiwu Huang, Xuejun Wang
{"title":"亚线性期望下扩展负相关随机变量加权和的强收敛特性及其统计应用","authors":"Liangxue Li, Xiaoqian Zheng, Haiwu Huang, Xuejun Wang","doi":"10.1007/s11009-024-10092-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we establish the complete <i>f</i>-moment convergence and the Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of extended negatively dependent (END, for short) random variables under sub-linear expectations, which extend and improve corresponding ones in sub-linear expectation space. As applications of the main results, the complete consistency and strong consistency of weighted estimators in nonparametric regression models under sub-linear expectations are also obtained.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strong Convergence Properties for Weighted Sums of Extended Negatively Dependent Random Variables Under Sub-linear Expectations with Statistical Applications\",\"authors\":\"Liangxue Li, Xiaoqian Zheng, Haiwu Huang, Xuejun Wang\",\"doi\":\"10.1007/s11009-024-10092-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we establish the complete <i>f</i>-moment convergence and the Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of extended negatively dependent (END, for short) random variables under sub-linear expectations, which extend and improve corresponding ones in sub-linear expectation space. As applications of the main results, the complete consistency and strong consistency of weighted estimators in nonparametric regression models under sub-linear expectations are also obtained.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-024-10092-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10092-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了亚线性期望下扩展负相关(简称END)随机变量加权和的完全f时刻收敛性和Marcinkiewicz-Zygmund型强大数定律,扩展并改进了亚线性期望空间中的相应结果。作为主要结果的应用,还得到了亚线性期望下非参数回归模型中加权估计子的完全一致性和强一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Strong Convergence Properties for Weighted Sums of Extended Negatively Dependent Random Variables Under Sub-linear Expectations with Statistical Applications

Strong Convergence Properties for Weighted Sums of Extended Negatively Dependent Random Variables Under Sub-linear Expectations with Statistical Applications

In this paper, we establish the complete f-moment convergence and the Marcinkiewicz-Zygmund type strong law of large numbers for weighted sums of extended negatively dependent (END, for short) random variables under sub-linear expectations, which extend and improve corresponding ones in sub-linear expectation space. As applications of the main results, the complete consistency and strong consistency of weighted estimators in nonparametric regression models under sub-linear expectations are also obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
58
审稿时长
6-12 weeks
期刊介绍: Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics. The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests: -Algorithms- Approximations- Asymptotic Approximations & Expansions- Combinatorial & Geometric Probability- Communication Networks- Extreme Value Theory- Finance- Image Analysis- Inequalities- Information Theory- Mathematical Physics- Molecular Biology- Monte Carlo Methods- Order Statistics- Queuing Theory- Reliability Theory- Stochastic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信