优化投资和再保险,最大限度地提高提取前的提取概率

IF 1 4区 数学 Q3 STATISTICS & PROBABILITY
Yakun Liu, Jingchao Li, Jieming Zhou, Yingchun Deng
{"title":"优化投资和再保险,最大限度地提高提取前的提取概率","authors":"Yakun Liu, Jingchao Li, Jieming Zhou, Yingchun Deng","doi":"10.1007/s11009-024-10096-9","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study the optimal investment and proportional reinsurance problem for an insurer with short-selling and borrowing constraints under the expected value premium principle. The claim process follows a Brownian risk model with a drift. The insurer’s surplus is allowed to invest in one risk-free asset and one risky asset. By using the dynamic programming approach and solving the corresponding boundary-value problems, the optimization objective of maximizing the probability of drawup before drowdown is considered initially. The optimal strategy and the corresponding value function are derived through solving the Hamilton-Jacobi-Bellman (HJB) equation. Moreover, numerical examples are performed to illustrate the effects of model parameters on the optimal strategy. In addition, we verify the optimality of the strategies obtained from the dynamic programming principle by Euler method.</p>","PeriodicalId":18442,"journal":{"name":"Methodology and Computing in Applied Probability","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Investment and Reinsurance to Maximize the Probability of Drawup Before Drawdown\",\"authors\":\"Yakun Liu, Jingchao Li, Jieming Zhou, Yingchun Deng\",\"doi\":\"10.1007/s11009-024-10096-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study the optimal investment and proportional reinsurance problem for an insurer with short-selling and borrowing constraints under the expected value premium principle. The claim process follows a Brownian risk model with a drift. The insurer’s surplus is allowed to invest in one risk-free asset and one risky asset. By using the dynamic programming approach and solving the corresponding boundary-value problems, the optimization objective of maximizing the probability of drawup before drowdown is considered initially. The optimal strategy and the corresponding value function are derived through solving the Hamilton-Jacobi-Bellman (HJB) equation. Moreover, numerical examples are performed to illustrate the effects of model parameters on the optimal strategy. In addition, we verify the optimality of the strategies obtained from the dynamic programming principle by Euler method.</p>\",\"PeriodicalId\":18442,\"journal\":{\"name\":\"Methodology and Computing in Applied Probability\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Methodology and Computing in Applied Probability\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11009-024-10096-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Methodology and Computing in Applied Probability","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11009-024-10096-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在预期价值溢价原则下,具有卖空和借贷约束的保险公司的最优投资和比例再保险问题。索赔过程遵循具有漂移的布朗风险模型。保险公司的盈余可以投资于一种无风险资产和一种风险资产。通过使用动态程序设计方法和解决相应的边界值问题,初步考虑了在下降前提取概率最大化的优化目标。通过求解汉密尔顿-雅各比-贝尔曼(HJB)方程,得出最优策略和相应的价值函数。此外,还通过数值示例说明了模型参数对最优策略的影响。此外,我们还通过欧拉法验证了根据动态编程原理得出的策略的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Optimal Investment and Reinsurance to Maximize the Probability of Drawup Before Drawdown

Optimal Investment and Reinsurance to Maximize the Probability of Drawup Before Drawdown

In this paper, we study the optimal investment and proportional reinsurance problem for an insurer with short-selling and borrowing constraints under the expected value premium principle. The claim process follows a Brownian risk model with a drift. The insurer’s surplus is allowed to invest in one risk-free asset and one risky asset. By using the dynamic programming approach and solving the corresponding boundary-value problems, the optimization objective of maximizing the probability of drawup before drowdown is considered initially. The optimal strategy and the corresponding value function are derived through solving the Hamilton-Jacobi-Bellman (HJB) equation. Moreover, numerical examples are performed to illustrate the effects of model parameters on the optimal strategy. In addition, we verify the optimality of the strategies obtained from the dynamic programming principle by Euler method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
58
审稿时长
6-12 weeks
期刊介绍: Methodology and Computing in Applied Probability will publish high quality research and review articles in the areas of applied probability that emphasize methodology and computing. Of special interest are articles in important areas of applications that include detailed case studies. Applied probability is a broad research area that is of interest to many scientists in diverse disciplines including: anthropology, biology, communication theory, economics, epidemiology, finance, linguistics, meteorology, operations research, psychology, quality control, reliability theory, sociology and statistics. The following alphabetical listing of topics of interest to the journal is not intended to be exclusive but to demonstrate the editorial policy of attracting papers which represent a broad range of interests: -Algorithms- Approximations- Asymptotic Approximations & Expansions- Combinatorial & Geometric Probability- Communication Networks- Extreme Value Theory- Finance- Image Analysis- Inequalities- Information Theory- Mathematical Physics- Molecular Biology- Monte Carlo Methods- Order Statistics- Queuing Theory- Reliability Theory- Stochastic Processes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信