{"title":"同质空间上的非发散性和刚性全测地子线面","authors":"Han Zhang, Runlin Zhang","doi":"10.1007/s11856-024-2645-6","DOIUrl":null,"url":null,"abstract":"<p>Let <i>G</i>/Γ be the quotient of a semisimple Lie group by an arithmetic lattice. We show that for reductive subgroups <i>H</i> of <i>G</i> that are large enough, the orbits of <i>H</i> on <i>G</i>/Γ intersect nontrivially with a fixed compact set. As a consequence, we deduce finiteness results for totally geodesic submanifolds of arithmetic quotients of symmetric spaces that do not admit nontrivial deformation and with bounded volume. Our work generalizes previous work of Tomanov–Weiss and Oh on this topic.</p>","PeriodicalId":14661,"journal":{"name":"Israel Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nondivergence on homogeneous spaces and rigid totally geodesic submanifolds\",\"authors\":\"Han Zhang, Runlin Zhang\",\"doi\":\"10.1007/s11856-024-2645-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <i>G</i>/Γ be the quotient of a semisimple Lie group by an arithmetic lattice. We show that for reductive subgroups <i>H</i> of <i>G</i> that are large enough, the orbits of <i>H</i> on <i>G</i>/Γ intersect nontrivially with a fixed compact set. As a consequence, we deduce finiteness results for totally geodesic submanifolds of arithmetic quotients of symmetric spaces that do not admit nontrivial deformation and with bounded volume. Our work generalizes previous work of Tomanov–Weiss and Oh on this topic.</p>\",\"PeriodicalId\":14661,\"journal\":{\"name\":\"Israel Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Israel Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11856-024-2645-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Israel Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11856-024-2645-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
假设 G/Γ 是半简单李群的算术网格商。我们证明,对于足够大的 G 的还原子群 H,H 在 G/Γ 上的轨道与一个固定的紧凑集非相交。因此,我们推导出了对称空间算术商的完全大地子形的有限性结果,这些子形不允许非难变形,并且具有有界体积。我们的研究概括了托马诺夫-韦斯(Tomanov-Weiss)和吴(Oh)之前在这一主题上的研究。
Nondivergence on homogeneous spaces and rigid totally geodesic submanifolds
Let G/Γ be the quotient of a semisimple Lie group by an arithmetic lattice. We show that for reductive subgroups H of G that are large enough, the orbits of H on G/Γ intersect nontrivially with a fixed compact set. As a consequence, we deduce finiteness results for totally geodesic submanifolds of arithmetic quotients of symmetric spaces that do not admit nontrivial deformation and with bounded volume. Our work generalizes previous work of Tomanov–Weiss and Oh on this topic.
期刊介绍:
The Israel Journal of Mathematics is an international journal publishing high-quality original research papers in a wide spectrum of pure and applied mathematics. The prestigious interdisciplinary editorial board reflects the diversity of subjects covered in this journal, including set theory, model theory, algebra, group theory, number theory, analysis, functional analysis, ergodic theory, algebraic topology, geometry, combinatorics, theoretical computer science, mathematical physics, and applied mathematics.