混乱中的模式:移动赫斯特指标及其在印度市场波动中的作用

Q4 Business, Management and Accounting
Param Shah, Ankush Raje, Jigarkumar Shah
{"title":"混乱中的模式:移动赫斯特指标及其在印度市场波动中的作用","authors":"Param Shah, Ankush Raje, Jigarkumar Shah","doi":"10.3390/jrfm17090390","DOIUrl":null,"url":null,"abstract":"Estimating the impact of volatility in financial markets is challenging due to complex dynamics, including random fluctuations involving white noise and trend components involving brown noise. In this study, we explore the potential of leveraging the chaotic properties of time series data for improved accuracy. Specifically, we introduce a novel trading strategy based on a technical indicator, Moving Hurst (MH). MH utilizes the Hurst exponent which characterizes the chaotic properties of time series. We hypothesize and then prove empirically that MH outperforms traditional indicators like Moving Averages (MA) in analyzing Indian equity indices and capturing profitable trading opportunities while mitigating the impact of volatility.","PeriodicalId":47226,"journal":{"name":"Journal of Risk and Financial Management","volume":"6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Patterns in the Chaos: The Moving Hurst Indicator and Its Role in Indian Market Volatility\",\"authors\":\"Param Shah, Ankush Raje, Jigarkumar Shah\",\"doi\":\"10.3390/jrfm17090390\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the impact of volatility in financial markets is challenging due to complex dynamics, including random fluctuations involving white noise and trend components involving brown noise. In this study, we explore the potential of leveraging the chaotic properties of time series data for improved accuracy. Specifically, we introduce a novel trading strategy based on a technical indicator, Moving Hurst (MH). MH utilizes the Hurst exponent which characterizes the chaotic properties of time series. We hypothesize and then prove empirically that MH outperforms traditional indicators like Moving Averages (MA) in analyzing Indian equity indices and capturing profitable trading opportunities while mitigating the impact of volatility.\",\"PeriodicalId\":47226,\"journal\":{\"name\":\"Journal of Risk and Financial Management\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Risk and Financial Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/jrfm17090390\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Business, Management and Accounting\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk and Financial Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/jrfm17090390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Business, Management and Accounting","Score":null,"Total":0}
引用次数: 0

摘要

由于复杂的动态变化,包括涉及白噪声的随机波动和涉及棕噪声的趋势成分,估算金融市场波动的影响具有挑战性。在本研究中,我们探索了利用时间序列数据的混沌特性提高准确性的潜力。具体来说,我们引入了一种基于技术指标 Moving Hurst (MH) 的新型交易策略。MH 利用了表征时间序列混沌特性的赫斯特指数。我们假设并通过实证证明,在分析印度股票指数和捕捉有利可图的交易机会时,MH 优于移动平均线(MA)等传统指标,同时还能减轻波动的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Patterns in the Chaos: The Moving Hurst Indicator and Its Role in Indian Market Volatility
Estimating the impact of volatility in financial markets is challenging due to complex dynamics, including random fluctuations involving white noise and trend components involving brown noise. In this study, we explore the potential of leveraging the chaotic properties of time series data for improved accuracy. Specifically, we introduce a novel trading strategy based on a technical indicator, Moving Hurst (MH). MH utilizes the Hurst exponent which characterizes the chaotic properties of time series. We hypothesize and then prove empirically that MH outperforms traditional indicators like Moving Averages (MA) in analyzing Indian equity indices and capturing profitable trading opportunities while mitigating the impact of volatility.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.50
自引率
0.00%
发文量
512
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信