Xinli Li, Guoqiang Yang, Lihong Ma, Bingxi Tang, Tao Tao
{"title":"N6-甲基腺苷(m6A)作家METTL5抑制胃癌的铁变态反应和抗肿瘤免疫力","authors":"Xinli Li, Guoqiang Yang, Lihong Ma, Bingxi Tang, Tao Tao","doi":"10.1038/s41420-024-02166-1","DOIUrl":null,"url":null,"abstract":"<p>Emerging evidence has shown that ferroptosis and antitumor immunity response of T lymphocytes play critical roles in multiple malignancies, including gastric cancer (GC). Here, the present research aims to reveal the function of novel N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) methyltransferase METTL5 on GC immune microenvironment. Clinically, elevated METTL5 was negatively correlated to the prognosis of GC patients. METTL5 high-expression repressed the Fe<sup>2+</sup> accumulation and ferroptosis to promote the GC immune evasion escaping from activated PBMCs’ killing effect. Mechanistically, upregulation of METTL5 promoted NRF2 mRNA stability, thereby inactivating the ferroptosis and repressing PBMCs’ cells antitumor immunity. One valuable finding is that ferroptosis inhibitor (Ferrostatin-1, Fer-1) could reduce the antitumor immunity of cocultured PBMCs. In other words, the increase of ferroptosis might contribute to the anti-tumor efficacy of immunotherapy. Further study revealed that m<sup>6</sup>A reader IGF2BP1 mediated the stability of NRF2 mRNA via METTL5/m<sup>6</sup>A/NRF2 axis. Collectively, these results demonstrate that METTL5 functions as an oncogene in GC immune microenvironment, and highlights a critical role in T lymphocytes’ antitumor immunity.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N6-methyladenosine (m6A) writer METTL5 represses the ferroptosis and antitumor immunity of gastric cancer\",\"authors\":\"Xinli Li, Guoqiang Yang, Lihong Ma, Bingxi Tang, Tao Tao\",\"doi\":\"10.1038/s41420-024-02166-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Emerging evidence has shown that ferroptosis and antitumor immunity response of T lymphocytes play critical roles in multiple malignancies, including gastric cancer (GC). Here, the present research aims to reveal the function of novel N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) methyltransferase METTL5 on GC immune microenvironment. Clinically, elevated METTL5 was negatively correlated to the prognosis of GC patients. METTL5 high-expression repressed the Fe<sup>2+</sup> accumulation and ferroptosis to promote the GC immune evasion escaping from activated PBMCs’ killing effect. Mechanistically, upregulation of METTL5 promoted NRF2 mRNA stability, thereby inactivating the ferroptosis and repressing PBMCs’ cells antitumor immunity. One valuable finding is that ferroptosis inhibitor (Ferrostatin-1, Fer-1) could reduce the antitumor immunity of cocultured PBMCs. In other words, the increase of ferroptosis might contribute to the anti-tumor efficacy of immunotherapy. Further study revealed that m<sup>6</sup>A reader IGF2BP1 mediated the stability of NRF2 mRNA via METTL5/m<sup>6</sup>A/NRF2 axis. Collectively, these results demonstrate that METTL5 functions as an oncogene in GC immune microenvironment, and highlights a critical role in T lymphocytes’ antitumor immunity.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-024-02166-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02166-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
N6-methyladenosine (m6A) writer METTL5 represses the ferroptosis and antitumor immunity of gastric cancer
Emerging evidence has shown that ferroptosis and antitumor immunity response of T lymphocytes play critical roles in multiple malignancies, including gastric cancer (GC). Here, the present research aims to reveal the function of novel N6-methyladenosine (m6A) methyltransferase METTL5 on GC immune microenvironment. Clinically, elevated METTL5 was negatively correlated to the prognosis of GC patients. METTL5 high-expression repressed the Fe2+ accumulation and ferroptosis to promote the GC immune evasion escaping from activated PBMCs’ killing effect. Mechanistically, upregulation of METTL5 promoted NRF2 mRNA stability, thereby inactivating the ferroptosis and repressing PBMCs’ cells antitumor immunity. One valuable finding is that ferroptosis inhibitor (Ferrostatin-1, Fer-1) could reduce the antitumor immunity of cocultured PBMCs. In other words, the increase of ferroptosis might contribute to the anti-tumor efficacy of immunotherapy. Further study revealed that m6A reader IGF2BP1 mediated the stability of NRF2 mRNA via METTL5/m6A/NRF2 axis. Collectively, these results demonstrate that METTL5 functions as an oncogene in GC immune microenvironment, and highlights a critical role in T lymphocytes’ antitumor immunity.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.