自动成型巷道顶板和肋板支护结构的支承机理及其支护设计方法

IF 3.7 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Bei Jiang, Ming-zi Wang, Qi Wang, Zhong-xin Xin, Xue-yang Xing, Yu-song Deng, Liang-di Yao
{"title":"自动成型巷道顶板和肋板支护结构的支承机理及其支护设计方法","authors":"Bei Jiang, Ming-zi Wang, Qi Wang, Zhong-xin Xin, Xue-yang Xing, Yu-song Deng, Liang-di Yao","doi":"10.1007/s11771-024-5678-4","DOIUrl":null,"url":null,"abstract":"<p>Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation. The stability control of automatically formed roadway is the key to the successful application of the new method. In order to realize the stability control of the roadway surrounding rock, the mechanical model of the roof and rib support structure is established, and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed. On this basis, the roof and rib support structure technology of confined lightweight concrete is proposed, and its mechanical tests under different eccentricity are carried out. The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens. The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens. By comparing the test results with the theoretical calculated results of the confined concrete, the calculation method of the bearing capacity for the confined lightweight concrete structure is selected. The design method of confined lightweight concrete support structure is established, and is successfully applied in the extra-large mine, Ningtiaota Coal Mine, China.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":"6 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bearing mechanism of roof and rib support structure in automatically formed roadway and its support design method\",\"authors\":\"Bei Jiang, Ming-zi Wang, Qi Wang, Zhong-xin Xin, Xue-yang Xing, Yu-song Deng, Liang-di Yao\",\"doi\":\"10.1007/s11771-024-5678-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation. The stability control of automatically formed roadway is the key to the successful application of the new method. In order to realize the stability control of the roadway surrounding rock, the mechanical model of the roof and rib support structure is established, and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed. On this basis, the roof and rib support structure technology of confined lightweight concrete is proposed, and its mechanical tests under different eccentricity are carried out. The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens. The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens. By comparing the test results with the theoretical calculated results of the confined concrete, the calculation method of the bearing capacity for the confined lightweight concrete structure is selected. The design method of confined lightweight concrete support structure is established, and is successfully applied in the extra-large mine, Ningtiaota Coal Mine, China.</p>\",\"PeriodicalId\":15231,\"journal\":{\"name\":\"Journal of Central South University\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Central South University\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11771-024-5678-4\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5678-4","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

自动成巷无煤柱开采技术是一种无煤柱预留和巷道掘进的新型开采方法。自动成型巷道的稳定性控制是新方法成功应用的关键。为实现巷道围岩的稳定性控制,建立了顶板与肋板支护结构的力学模型,揭示了自动成巷参数对复合力的影响机理。在此基础上,提出了约束轻质混凝土顶板与肋板支护结构技术,并对其进行了不同偏心率下的力学试验。结果表明,约束轻质混凝土试件的承载力与普通约束混凝土试件基本相同。不同偏心率下约束轻质混凝土试件的承载力是 U 型钢试件的 1.95 倍。通过试验结果与约束混凝土理论计算结果的对比,筛选出约束轻质混凝土结构承载力的计算方法。建立了约束轻质混凝土支护结构的设计方法,并成功应用于中国特大型矿井宁条塔煤矿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bearing mechanism of roof and rib support structure in automatically formed roadway and its support design method

Non-pillar mining technology with automatically formed roadway is a new mining method without coal pillar reservation and roadway excavation. The stability control of automatically formed roadway is the key to the successful application of the new method. In order to realize the stability control of the roadway surrounding rock, the mechanical model of the roof and rib support structure is established, and the influence mechanism of the automatically formed roadway parameters on the compound force is revealed. On this basis, the roof and rib support structure technology of confined lightweight concrete is proposed, and its mechanical tests under different eccentricity are carried out. The results show that the bearing capacity of confined lightweight concrete specimens is basically the same as that of ordinary confined concrete specimens. The bearing capacity of confined lightweight concrete specimens under different eccentricities is 1.95 times higher than those of U-shaped steel specimens. By comparing the test results with the theoretical calculated results of the confined concrete, the calculation method of the bearing capacity for the confined lightweight concrete structure is selected. The design method of confined lightweight concrete support structure is established, and is successfully applied in the extra-large mine, Ningtiaota Coal Mine, China.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Central South University
Journal of Central South University METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.10
自引率
6.80%
发文量
242
审稿时长
2-4 weeks
期刊介绍: Focuses on the latest research achievements in mining and metallurgy Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信