动态法向位移条件下粗糙接合面的剪切机械特性和摩擦滑动响应

IF 3.7 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Qiang Zhu, Qian Yin, Zhi-gang Tao, Man-chao He, Bo-wen Zheng, Hong-wen Jing, Shu-lin Ren, Qiang Zhang, Bo Meng, Dong-feng Bai, Sai-sai Wu, Jiang-yu Wu
{"title":"动态法向位移条件下粗糙接合面的剪切机械特性和摩擦滑动响应","authors":"Qiang Zhu, Qian Yin, Zhi-gang Tao, Man-chao He, Bo-wen Zheng, Hong-wen Jing, Shu-lin Ren, Qiang Zhang, Bo Meng, Dong-feng Bai, Sai-sai Wu, Jiang-yu Wu","doi":"10.1007/s11771-024-5697-1","DOIUrl":null,"url":null,"abstract":"<p>A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating geological disasters. This study conducted shear experiments on rough rock joints under displacement-controlled dynamic normal loads, investigating the shear behaviors of joints across varying initial normal loads, normal loading frequencies, and normal loading amplitudes. Experimental results showed that the peak/valley shear force values increased with initial normal loads and normal loading frequencies but showed an initial increase followed by a decrease with normal loading amplitudes. Dynamic normal loading can either increase or decrease shear strength, while this study demonstrates that higher frequencies lead to enhanced friction. Increased initial normal loading and normal loading frequency result in a gradual decrease in joint roughness coefficient (JRC) values of joint surfaces after shearing. Positive correlations existed between frictional energy dissipation and peak shear forces, while post-shear joint surface roughness exhibited a negative correlation with peak shear forces through linear regression analysis. This study contributes to a better understanding of the sliding responses and shear mechanical characteristics of rock joints under dynamic disturbances.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Shear mechanical properties and frictional sliding responses of rough joint surfaces under dynamic normal displacement conditions\",\"authors\":\"Qiang Zhu, Qian Yin, Zhi-gang Tao, Man-chao He, Bo-wen Zheng, Hong-wen Jing, Shu-lin Ren, Qiang Zhang, Bo Meng, Dong-feng Bai, Sai-sai Wu, Jiang-yu Wu\",\"doi\":\"10.1007/s11771-024-5697-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating geological disasters. This study conducted shear experiments on rough rock joints under displacement-controlled dynamic normal loads, investigating the shear behaviors of joints across varying initial normal loads, normal loading frequencies, and normal loading amplitudes. Experimental results showed that the peak/valley shear force values increased with initial normal loads and normal loading frequencies but showed an initial increase followed by a decrease with normal loading amplitudes. Dynamic normal loading can either increase or decrease shear strength, while this study demonstrates that higher frequencies lead to enhanced friction. Increased initial normal loading and normal loading frequency result in a gradual decrease in joint roughness coefficient (JRC) values of joint surfaces after shearing. Positive correlations existed between frictional energy dissipation and peak shear forces, while post-shear joint surface roughness exhibited a negative correlation with peak shear forces through linear regression analysis. This study contributes to a better understanding of the sliding responses and shear mechanical characteristics of rock joints under dynamic disturbances.</p>\",\"PeriodicalId\":15231,\"journal\":{\"name\":\"Journal of Central South University\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Central South University\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11771-024-5697-1\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5697-1","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

全面了解高法向荷载和强约束条件下岩石节理的动态摩擦特性,对于确保深部工程施工安全和减轻地质灾害至关重要。本研究进行了位移控制动态法向载荷下粗糙岩石节理的剪切实验,研究了不同初始法向载荷、法向载荷频率和法向载荷振幅下节理的剪切行为。实验结果表明,峰值/谷值剪力值随着初始法向载荷和法向载荷频率的变化而增加,但随着法向载荷振幅的变化,峰值/谷值剪力值先增加后减小。动态法向载荷既可以增加剪切强度,也可以降低剪切强度,而本研究表明,频率越高,摩擦力越大。增加初始法向加载和法向加载频率会导致剪切后接合面的接合粗糙度系数(JRC)值逐渐降低。摩擦能量耗散与峰值剪切力之间存在正相关,而通过线性回归分析,剪切后的接合面粗糙度与峰值剪切力呈负相关。这项研究有助于更好地理解岩石节理在动态扰动下的滑动响应和剪切机械特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Shear mechanical properties and frictional sliding responses of rough joint surfaces under dynamic normal displacement conditions

A comprehensive understanding of the dynamic frictional characteristics in rock joints under high normal load and strong confinement is essential for ensuring the safety of deep engineering construction and mitigating geological disasters. This study conducted shear experiments on rough rock joints under displacement-controlled dynamic normal loads, investigating the shear behaviors of joints across varying initial normal loads, normal loading frequencies, and normal loading amplitudes. Experimental results showed that the peak/valley shear force values increased with initial normal loads and normal loading frequencies but showed an initial increase followed by a decrease with normal loading amplitudes. Dynamic normal loading can either increase or decrease shear strength, while this study demonstrates that higher frequencies lead to enhanced friction. Increased initial normal loading and normal loading frequency result in a gradual decrease in joint roughness coefficient (JRC) values of joint surfaces after shearing. Positive correlations existed between frictional energy dissipation and peak shear forces, while post-shear joint surface roughness exhibited a negative correlation with peak shear forces through linear regression analysis. This study contributes to a better understanding of the sliding responses and shear mechanical characteristics of rock joints under dynamic disturbances.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Central South University
Journal of Central South University METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.10
自引率
6.80%
发文量
242
审稿时长
2-4 weeks
期刊介绍: Focuses on the latest research achievements in mining and metallurgy Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信