{"title":"通过碳纳米管自组装构建空心管,用于捕获二氧化碳","authors":"Xu-rui Chen, Jun Wu, Li Gu, Xue-bo Cao","doi":"10.1007/s11771-024-5701-9","DOIUrl":null,"url":null,"abstract":"<p>Carbon nanotubes (CNTs) have garnered significant attention in the fields of science, engineering, and medicine due to their numerous advantages. The initial step towards harnessing the potential of CNTs involves their macroscopic assembly. The present study employed a gentle and direct self-assembly technique, wherein controlled growth of CNT sheaths occurred on the metal wire’s surface, followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs. By controlling the growth time and temperature, it is possible to alter the thickness of the CNTs sheath. After immersing in a solution containing 1 g/L of CNTs at 60 °C for 24 h, the resulting CNTs layer achieved a thickness of up to 60 µm. These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires, thereby exhibiting exceptional attributes such as robustness, flexibility, air tightness, and high adsorption capacity that effectively capture CO<sub>2</sub> from the gas mixture.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hollow tubes constructed by carbon nanotubes self-assembly for CO2 capture\",\"authors\":\"Xu-rui Chen, Jun Wu, Li Gu, Xue-bo Cao\",\"doi\":\"10.1007/s11771-024-5701-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Carbon nanotubes (CNTs) have garnered significant attention in the fields of science, engineering, and medicine due to their numerous advantages. The initial step towards harnessing the potential of CNTs involves their macroscopic assembly. The present study employed a gentle and direct self-assembly technique, wherein controlled growth of CNT sheaths occurred on the metal wire’s surface, followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs. By controlling the growth time and temperature, it is possible to alter the thickness of the CNTs sheath. After immersing in a solution containing 1 g/L of CNTs at 60 °C for 24 h, the resulting CNTs layer achieved a thickness of up to 60 µm. These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires, thereby exhibiting exceptional attributes such as robustness, flexibility, air tightness, and high adsorption capacity that effectively capture CO<sub>2</sub> from the gas mixture.</p>\",\"PeriodicalId\":15231,\"journal\":{\"name\":\"Journal of Central South University\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Central South University\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11771-024-5701-9\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5701-9","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Hollow tubes constructed by carbon nanotubes self-assembly for CO2 capture
Carbon nanotubes (CNTs) have garnered significant attention in the fields of science, engineering, and medicine due to their numerous advantages. The initial step towards harnessing the potential of CNTs involves their macroscopic assembly. The present study employed a gentle and direct self-assembly technique, wherein controlled growth of CNT sheaths occurred on the metal wire’s surface, followed by etching of the remaining metal to obtain the hollow tubes composed of CNTs. By controlling the growth time and temperature, it is possible to alter the thickness of the CNTs sheath. After immersing in a solution containing 1 g/L of CNTs at 60 °C for 24 h, the resulting CNTs layer achieved a thickness of up to 60 µm. These hollow CNTs tubes with varying inner diameters were prepared through surface reinforcement using polymers and sacrificing metal wires, thereby exhibiting exceptional attributes such as robustness, flexibility, air tightness, and high adsorption capacity that effectively capture CO2 from the gas mixture.
期刊介绍:
Focuses on the latest research achievements in mining and metallurgy
Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering