淬火冷却速度对 6061 铝合金残余应力和微观结构演变的影响

IF 3.7 2区 材料科学 Q1 METALLURGY & METALLURGICAL ENGINEERING
Ke Huang, You-ping Yi, Shi-quan Huang, Hai-lin He, Jie Liu, Hong-en Hua, Yun-jian Tang
{"title":"淬火冷却速度对 6061 铝合金残余应力和微观结构演变的影响","authors":"Ke Huang, You-ping Yi, Shi-quan Huang, Hai-lin He, Jie Liu, Hong-en Hua, Yun-jian Tang","doi":"10.1007/s11771-024-5705-5","DOIUrl":null,"url":null,"abstract":"<p>In this study, the cooling rate was manipulated by quenching with water of different temperatures (30, 60 and 100 °C). Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods, respectively. Then, the processability of the quenched samples was evaluated at cryogenic temperatures. The mechanical properties of the as-aged samples were assessed, and microstructure evolution was analyzed. The surface residual stresses of samples W30°C, W60°C and W100°C is −178.7, −161.7 and −117.2 MPa, respectively along <i>x</i>-direction, respectively; and −191.2, −172.1 and −126.2 MPa, respectively along <i>y</i>-direction. The sample quenched in boiling water displaying the lowest residual stress (∼34 % and ∼60% reduction in the surface and core). The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient. Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures. The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30 °C to 100 °C. Fine and homogeneous <i>β</i>″ phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones (GP zones) premature precipitated during quenching process.</p>","PeriodicalId":15231,"journal":{"name":"Journal of Central South University","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of quenching cooling rate on residual stress and microstructure evolution of 6061 aluminum alloy\",\"authors\":\"Ke Huang, You-ping Yi, Shi-quan Huang, Hai-lin He, Jie Liu, Hong-en Hua, Yun-jian Tang\",\"doi\":\"10.1007/s11771-024-5705-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this study, the cooling rate was manipulated by quenching with water of different temperatures (30, 60 and 100 °C). Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods, respectively. Then, the processability of the quenched samples was evaluated at cryogenic temperatures. The mechanical properties of the as-aged samples were assessed, and microstructure evolution was analyzed. The surface residual stresses of samples W30°C, W60°C and W100°C is −178.7, −161.7 and −117.2 MPa, respectively along <i>x</i>-direction, respectively; and −191.2, −172.1 and −126.2 MPa, respectively along <i>y</i>-direction. The sample quenched in boiling water displaying the lowest residual stress (∼34 % and ∼60% reduction in the surface and core). The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient. Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures. The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30 °C to 100 °C. Fine and homogeneous <i>β</i>″ phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones (GP zones) premature precipitated during quenching process.</p>\",\"PeriodicalId\":15231,\"journal\":{\"name\":\"Journal of Central South University\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Central South University\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11771-024-5705-5\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Central South University","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11771-024-5705-5","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
引用次数: 0

摘要

本研究通过不同温度(30、60 和 100 °C)的水淬火来控制冷却速度。采用钻孔法和裂纹顺应法分别测量了淬火 6061 铝合金样品的表面和内部残余应力。然后,在低温条件下评估了淬火样品的可加工性。评估了老化样品的机械性能,并分析了微观结构的演变。样品 W30°C、W60°C 和 W100°C 的表面残余应力沿 x 方向分别为 -178.7、-161.7 和 -117.2 兆帕;沿 y 方向分别为 -191.2、-172.1 和 -126.2 兆帕。在沸水中淬火的样品残余应力最低(表面和核心分别降低了 ∼34 % 和 ∼60%)。淬火残余应力的产生和分布可归因于晶格畸变梯度。低温淬火冷却速率相对较低的样品也表现出理想的塑性。当淬火水温从 30 °C 升至 100 °C 时,老化样品的强度为 291.2 至 270.1 兆帕。在用沸水淬火的未淬火样品中观察到了细小均匀的β″相,这是由于在淬火过程中过早析出了团簇和吉尼尔-普雷斯顿区(GP 区)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of quenching cooling rate on residual stress and microstructure evolution of 6061 aluminum alloy

In this study, the cooling rate was manipulated by quenching with water of different temperatures (30, 60 and 100 °C). Surface and internal residual stresses in the quenched 6061 aluminum alloy samples were measured using hole-drilling and crack compliance methods, respectively. Then, the processability of the quenched samples was evaluated at cryogenic temperatures. The mechanical properties of the as-aged samples were assessed, and microstructure evolution was analyzed. The surface residual stresses of samples W30°C, W60°C and W100°C is −178.7, −161.7 and −117.2 MPa, respectively along x-direction, respectively; and −191.2, −172.1 and −126.2 MPa, respectively along y-direction. The sample quenched in boiling water displaying the lowest residual stress (∼34 % and ∼60% reduction in the surface and core). The generation and distribution of quenching residual stress could be attributed to the lattice distortion gradient. Desirable plasticity was also exhibited in the samples with relatively low quenching cooling rates at cryogenic temperatures. The strengthes of the as-aged samples are 291.2 to 270.1 MPa as the quenching water temperature increase from 30 °C to 100 °C. Fine and homogeneous β″ phases were observed in the as-aged sample quenched with boiling water due to the clusters and Guinier-Preston zones (GP zones) premature precipitated during quenching process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Central South University
Journal of Central South University METALLURGY & METALLURGICAL ENGINEERING-
CiteScore
6.10
自引率
6.80%
发文量
242
审稿时长
2-4 weeks
期刊介绍: Focuses on the latest research achievements in mining and metallurgy Coverage spans across materials science and engineering, metallurgical science and engineering, mineral processing, geology and mining, chemical engineering, and mechanical, electronic and information engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信