振幅无序的振荡驱动下的量子输运

Vatsana Tiwari, Sushanta Dattagupta, Devendra Singh Bhakuni, Auditya Sharma
{"title":"振幅无序的振荡驱动下的量子输运","authors":"Vatsana Tiwari, Sushanta Dattagupta, Devendra Singh Bhakuni, Auditya Sharma","doi":"arxiv-2408.12653","DOIUrl":null,"url":null,"abstract":"We investigate the dynamics of non-interacting particles in a one-dimensional\ntight-binding chain in the presence of an electric field with random amplitude\ndrawn from a Gaussian distribution, and explicitly focus on the nature of\nquantum transport. We derive an exact expression for the probability propagator\nand the mean-squared displacement in the clean limit and generalize it for the\ndisordered case using the Liouville operator method. Our analysis reveals that\nin the presence a random static field, the system follows diffusive transport;\nhowever, an increase in the field strength causes a suppression in the\ntransport and thus results in disorder-induced localization. We further extend\nthe analysis for a time-dependent disordered electric field and show that the\ndynamics of mean-squared-displacement deviates from the parabolic path as the\nfield strength increases, unlike the clean limit where ballistic transport\noccurs.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum transport under oscillatory drive with disordered amplitude\",\"authors\":\"Vatsana Tiwari, Sushanta Dattagupta, Devendra Singh Bhakuni, Auditya Sharma\",\"doi\":\"arxiv-2408.12653\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We investigate the dynamics of non-interacting particles in a one-dimensional\\ntight-binding chain in the presence of an electric field with random amplitude\\ndrawn from a Gaussian distribution, and explicitly focus on the nature of\\nquantum transport. We derive an exact expression for the probability propagator\\nand the mean-squared displacement in the clean limit and generalize it for the\\ndisordered case using the Liouville operator method. Our analysis reveals that\\nin the presence a random static field, the system follows diffusive transport;\\nhowever, an increase in the field strength causes a suppression in the\\ntransport and thus results in disorder-induced localization. We further extend\\nthe analysis for a time-dependent disordered electric field and show that the\\ndynamics of mean-squared-displacement deviates from the parabolic path as the\\nfield strength increases, unlike the clean limit where ballistic transport\\noccurs.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.12653\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.12653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了存在高斯分布随机振幅电场的一维光结合链中非相互作用粒子的动力学,并明确关注量子输运的性质。我们推导出了清洁极限下概率传播者和均方位移的精确表达式,并利用柳维尔算子法对无序情况进行了概括。我们的分析表明,在存在随机静态场的情况下,系统遵循扩散输运;然而,场强的增加会导致输运抑制,从而导致无序诱导的局域化。我们进一步扩展了对随时间变化的无序电场的分析,结果表明,随着场强的增加,平均平方位移的动力学轨迹偏离了抛物线轨迹,这与发生弹道输运的清洁极限不同。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum transport under oscillatory drive with disordered amplitude
We investigate the dynamics of non-interacting particles in a one-dimensional tight-binding chain in the presence of an electric field with random amplitude drawn from a Gaussian distribution, and explicitly focus on the nature of quantum transport. We derive an exact expression for the probability propagator and the mean-squared displacement in the clean limit and generalize it for the disordered case using the Liouville operator method. Our analysis reveals that in the presence a random static field, the system follows diffusive transport; however, an increase in the field strength causes a suppression in the transport and thus results in disorder-induced localization. We further extend the analysis for a time-dependent disordered electric field and show that the dynamics of mean-squared-displacement deviates from the parabolic path as the field strength increases, unlike the clean limit where ballistic transport occurs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信