非互惠自旋玻璃转变和老化

Giulia Garcia Lorenzana, Ada Altieri, Giulio Biroli, Michel Fruchart, Vincenzo Vitelli
{"title":"非互惠自旋玻璃转变和老化","authors":"Giulia Garcia Lorenzana, Ada Altieri, Giulio Biroli, Michel Fruchart, Vincenzo Vitelli","doi":"arxiv-2408.17360","DOIUrl":null,"url":null,"abstract":"Disordered systems generically exhibit aging and a glass transition. Previous\nstudies have long suggested that non-reciprocity tends to destroy glassiness.\nHere, we show that this is not always the case using a bipartite spherical\nSherrington-Kirpatrick model that describes the antagonistic coupling between\ntwo identical complex agents modeled as macroscopic spin glasses. Our dynamical\nmean field theory calculations reveal an exceptional-point mediated transition\nfrom a static disorder phase to an oscillating amorphous phase as well as\nnon-reciprocal aging with slow dynamics and oscillations.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"58 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-reciprocal spin-glass transition and aging\",\"authors\":\"Giulia Garcia Lorenzana, Ada Altieri, Giulio Biroli, Michel Fruchart, Vincenzo Vitelli\",\"doi\":\"arxiv-2408.17360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Disordered systems generically exhibit aging and a glass transition. Previous\\nstudies have long suggested that non-reciprocity tends to destroy glassiness.\\nHere, we show that this is not always the case using a bipartite spherical\\nSherrington-Kirpatrick model that describes the antagonistic coupling between\\ntwo identical complex agents modeled as macroscopic spin glasses. Our dynamical\\nmean field theory calculations reveal an exceptional-point mediated transition\\nfrom a static disorder phase to an oscillating amorphous phase as well as\\nnon-reciprocal aging with slow dynamics and oscillations.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"58 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.17360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.17360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无序系统通常会出现老化和玻璃化转变。在这里,我们使用一个双方球形谢林顿-基尔帕特里克模型,描述了被模拟为宏观自旋玻璃的两种相同复杂介质之间的拮抗耦合,结果表明情况并非总是如此。我们的动力学均场理论计算揭示了由例外点介导的从静态无序相到振荡无定形相的转变,以及具有缓慢动力学和振荡的非互惠老化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-reciprocal spin-glass transition and aging
Disordered systems generically exhibit aging and a glass transition. Previous studies have long suggested that non-reciprocity tends to destroy glassiness. Here, we show that this is not always the case using a bipartite spherical Sherrington-Kirpatrick model that describes the antagonistic coupling between two identical complex agents modeled as macroscopic spin glasses. Our dynamical mean field theory calculations reveal an exceptional-point mediated transition from a static disorder phase to an oscillating amorphous phase as well as non-reciprocal aging with slow dynamics and oscillations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信