液-气相共存的神经密度泛函理论

Florian Sammüller, Matthias Schmidt, Robert Evans
{"title":"液-气相共存的神经密度泛函理论","authors":"Florian Sammüller, Matthias Schmidt, Robert Evans","doi":"arxiv-2408.15835","DOIUrl":null,"url":null,"abstract":"We use supervised machine learning together with the concepts of classical\ndensity functional theory to investigate the effects of interparticle\nattraction on the pair structure, thermodynamics, bulk liquid-gas coexistence,\nand associated interfacial phenomena in many-body systems. Local learning of\nthe one-body direct correlation functional is based on Monte Carlo simulations\nof inhomogeneous systems with randomized thermodynamic conditions, randomized\nplanar shapes of the external potential, and randomized box sizes. Focusing on\nthe prototypical Lennard-Jones system, we test predictions of the resulting\nneural attractive density functional across a broad spectrum of physical\nbehaviour associated with liquid-gas phase coexistence in bulk and at\ninterfaces. We analyse the bulk radial distribution function $g(r)$ obtained\nfrom automatic differentiation and the Ornstein-Zernike route and determine i)\nthe Fisher-Widom line, i.e.\\ the crossover of the asymptotic (large distance)\ndecay of $g(r)$ from monotonic to oscillatory, ii) the (Widom) line of maximal\ncorrelation length, iii) the line of maximal isothermal compressibility and iv)\nthe spinodal by calculating the poles of the structure factor in the complex\nplane. The bulk binodal and the density profile of the free liquid-gas\ninterface are obtained from density functional minimization and the\ncorresponding surface tension from functional line integration. We also show\nthat the neural functional describes accurately the phenomena of drying at a\nhard wall and of capillary evaporation for a liquid confined in a slit pore.\nOur neural framework yields results that improve significantly upon standard\nmean-field treatments of interparticle attraction. Comparison with independent\nsimulation results demonstrates a consistent picture of phase separation even\nwhen restricting the training to supercritical states only.","PeriodicalId":501146,"journal":{"name":"arXiv - PHYS - Soft Condensed Matter","volume":"22 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neural density functional theory of liquid-gas phase coexistence\",\"authors\":\"Florian Sammüller, Matthias Schmidt, Robert Evans\",\"doi\":\"arxiv-2408.15835\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We use supervised machine learning together with the concepts of classical\\ndensity functional theory to investigate the effects of interparticle\\nattraction on the pair structure, thermodynamics, bulk liquid-gas coexistence,\\nand associated interfacial phenomena in many-body systems. Local learning of\\nthe one-body direct correlation functional is based on Monte Carlo simulations\\nof inhomogeneous systems with randomized thermodynamic conditions, randomized\\nplanar shapes of the external potential, and randomized box sizes. Focusing on\\nthe prototypical Lennard-Jones system, we test predictions of the resulting\\nneural attractive density functional across a broad spectrum of physical\\nbehaviour associated with liquid-gas phase coexistence in bulk and at\\ninterfaces. We analyse the bulk radial distribution function $g(r)$ obtained\\nfrom automatic differentiation and the Ornstein-Zernike route and determine i)\\nthe Fisher-Widom line, i.e.\\\\ the crossover of the asymptotic (large distance)\\ndecay of $g(r)$ from monotonic to oscillatory, ii) the (Widom) line of maximal\\ncorrelation length, iii) the line of maximal isothermal compressibility and iv)\\nthe spinodal by calculating the poles of the structure factor in the complex\\nplane. The bulk binodal and the density profile of the free liquid-gas\\ninterface are obtained from density functional minimization and the\\ncorresponding surface tension from functional line integration. We also show\\nthat the neural functional describes accurately the phenomena of drying at a\\nhard wall and of capillary evaporation for a liquid confined in a slit pore.\\nOur neural framework yields results that improve significantly upon standard\\nmean-field treatments of interparticle attraction. Comparison with independent\\nsimulation results demonstrates a consistent picture of phase separation even\\nwhen restricting the training to supercritical states only.\",\"PeriodicalId\":501146,\"journal\":{\"name\":\"arXiv - PHYS - Soft Condensed Matter\",\"volume\":\"22 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-08-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Soft Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2408.15835\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.15835","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们利用有监督的机器学习和经典密度泛函理论的概念来研究粒子间牵引对多体系统中的对结构、热力学、体液气共存和相关界面现象的影响。单体直接相关函数的局部学习是基于蒙特卡罗模拟非均质系统的随机热力学条件、随机外部势平面形状和随机箱体大小。我们以原型伦纳德-琼斯系统为重点,测试了由此产生的神经吸引密度函数在与液相-气相共存相关的大体和界面物理行为的广泛范围内的预测结果。我们分析了通过自动微分和奥恩斯坦-泽尔尼克路径得到的块体径向分布函数$g(r)$,并确定了i)费舍尔-维多姆线,即$g(r)$的渐近(大距离)衰减从单调到振荡的交叉点;ii)最大相关长度的(维多姆)线;iii)最大等温可压缩性线;以及iv)通过计算复平面内结构因子的极点得到的自旋线。通过密度函数最小化可以得到自由液气界面的体积二项式和密度曲线,通过函数线积分可以得到相应的表面张力。我们还表明,神经函 数准确地描述了硬壁干燥现象和限制在狭缝孔隙中的液体的毛细蒸发现象。与独立模拟结果的比较表明,即使将训练限制在超临界状态,相分离的情况也是一致的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural density functional theory of liquid-gas phase coexistence
We use supervised machine learning together with the concepts of classical density functional theory to investigate the effects of interparticle attraction on the pair structure, thermodynamics, bulk liquid-gas coexistence, and associated interfacial phenomena in many-body systems. Local learning of the one-body direct correlation functional is based on Monte Carlo simulations of inhomogeneous systems with randomized thermodynamic conditions, randomized planar shapes of the external potential, and randomized box sizes. Focusing on the prototypical Lennard-Jones system, we test predictions of the resulting neural attractive density functional across a broad spectrum of physical behaviour associated with liquid-gas phase coexistence in bulk and at interfaces. We analyse the bulk radial distribution function $g(r)$ obtained from automatic differentiation and the Ornstein-Zernike route and determine i) the Fisher-Widom line, i.e.\ the crossover of the asymptotic (large distance) decay of $g(r)$ from monotonic to oscillatory, ii) the (Widom) line of maximal correlation length, iii) the line of maximal isothermal compressibility and iv) the spinodal by calculating the poles of the structure factor in the complex plane. The bulk binodal and the density profile of the free liquid-gas interface are obtained from density functional minimization and the corresponding surface tension from functional line integration. We also show that the neural functional describes accurately the phenomena of drying at a hard wall and of capillary evaporation for a liquid confined in a slit pore. Our neural framework yields results that improve significantly upon standard mean-field treatments of interparticle attraction. Comparison with independent simulation results demonstrates a consistent picture of phase separation even when restricting the training to supercritical states only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信