Ahmed A. Abdelrahman, Thorsten Hempel, Aly Khalifa, Ayoub Al-Hamadi
{"title":"基于回归和分类损失相结合的精细注视估算","authors":"Ahmed A. Abdelrahman, Thorsten Hempel, Aly Khalifa, Ayoub Al-Hamadi","doi":"10.1007/s10489-024-05778-3","DOIUrl":null,"url":null,"abstract":"<div><p>Human gaze is a crucial cue used in various applications such as human-robot interaction, autonomous driving, and virtual reality. Recently, convolution neural network (CNN) approaches have made notable progress in predicting gaze angels. However, estimating accurate gaze direction in-the-wild is still a challenging problem due to the difficulty of obtaining the most crucial gaze information that exists in the eye area which constitutes a small part of the face images. In this paper, we introduce a novel two-branch CNN architecture with a multi-loss approach to estimate gaze angles (pitch and yaw) from face images. Our approach utilizes separate fully connected layers for each gaze angle prediction, allowing explicit learning of discriminative features and emphasizing the distinct information associated with each gaze angle. Moreover, we adopt a multi-loss approach, incorporating both classification and regression losses. This allows for joint optimization of the combined loss for each gaze angle, resulting in improved overall gaze performance. To evaluate our model, we conduct experiments on three popular datasets collected under unconstrained settings: MPIIFaceGaze, Gaze360, and RT-GENE. Our proposed model surpasses current state-of-the-art methods and achieves state-of-the-art performance on all three datasets, showcasing its superior capability in gaze estimation.</p></div>","PeriodicalId":8041,"journal":{"name":"Applied Intelligence","volume":"54 21","pages":"10982 - 10994"},"PeriodicalIF":3.4000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10489-024-05778-3.pdf","citationCount":"0","resultStr":"{\"title\":\"Fine-grained gaze estimation based on the combination of regression and classification losses\",\"authors\":\"Ahmed A. Abdelrahman, Thorsten Hempel, Aly Khalifa, Ayoub Al-Hamadi\",\"doi\":\"10.1007/s10489-024-05778-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Human gaze is a crucial cue used in various applications such as human-robot interaction, autonomous driving, and virtual reality. Recently, convolution neural network (CNN) approaches have made notable progress in predicting gaze angels. However, estimating accurate gaze direction in-the-wild is still a challenging problem due to the difficulty of obtaining the most crucial gaze information that exists in the eye area which constitutes a small part of the face images. In this paper, we introduce a novel two-branch CNN architecture with a multi-loss approach to estimate gaze angles (pitch and yaw) from face images. Our approach utilizes separate fully connected layers for each gaze angle prediction, allowing explicit learning of discriminative features and emphasizing the distinct information associated with each gaze angle. Moreover, we adopt a multi-loss approach, incorporating both classification and regression losses. This allows for joint optimization of the combined loss for each gaze angle, resulting in improved overall gaze performance. To evaluate our model, we conduct experiments on three popular datasets collected under unconstrained settings: MPIIFaceGaze, Gaze360, and RT-GENE. Our proposed model surpasses current state-of-the-art methods and achieves state-of-the-art performance on all three datasets, showcasing its superior capability in gaze estimation.</p></div>\",\"PeriodicalId\":8041,\"journal\":{\"name\":\"Applied Intelligence\",\"volume\":\"54 21\",\"pages\":\"10982 - 10994\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-09-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10489-024-05778-3.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Intelligence\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10489-024-05778-3\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Intelligence","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s10489-024-05778-3","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Fine-grained gaze estimation based on the combination of regression and classification losses
Human gaze is a crucial cue used in various applications such as human-robot interaction, autonomous driving, and virtual reality. Recently, convolution neural network (CNN) approaches have made notable progress in predicting gaze angels. However, estimating accurate gaze direction in-the-wild is still a challenging problem due to the difficulty of obtaining the most crucial gaze information that exists in the eye area which constitutes a small part of the face images. In this paper, we introduce a novel two-branch CNN architecture with a multi-loss approach to estimate gaze angles (pitch and yaw) from face images. Our approach utilizes separate fully connected layers for each gaze angle prediction, allowing explicit learning of discriminative features and emphasizing the distinct information associated with each gaze angle. Moreover, we adopt a multi-loss approach, incorporating both classification and regression losses. This allows for joint optimization of the combined loss for each gaze angle, resulting in improved overall gaze performance. To evaluate our model, we conduct experiments on three popular datasets collected under unconstrained settings: MPIIFaceGaze, Gaze360, and RT-GENE. Our proposed model surpasses current state-of-the-art methods and achieves state-of-the-art performance on all three datasets, showcasing its superior capability in gaze estimation.
期刊介绍:
With a focus on research in artificial intelligence and neural networks, this journal addresses issues involving solutions of real-life manufacturing, defense, management, government and industrial problems which are too complex to be solved through conventional approaches and require the simulation of intelligent thought processes, heuristics, applications of knowledge, and distributed and parallel processing. The integration of these multiple approaches in solving complex problems is of particular importance.
The journal presents new and original research and technological developments, addressing real and complex issues applicable to difficult problems. It provides a medium for exchanging scientific research and technological achievements accomplished by the international community.