离子液体模板化离子二氧化硅多尺度孔隙的可控形成

Shilpa SharmaL2C, Julian OberdisseL2C, Johan AlauzunICGM ICMMM, Philippe Dieudonné-George, Thomas Bizien, Cansu Akkaya, Peter Hesemann, Anne-Caroline Genix
{"title":"离子液体模板化离子二氧化硅多尺度孔隙的可控形成","authors":"Shilpa SharmaL2C, Julian OberdisseL2C, Johan AlauzunICGM ICMMM, Philippe Dieudonné-George, Thomas Bizien, Cansu Akkaya, Peter Hesemann, Anne-Caroline Genix","doi":"arxiv-2409.04051","DOIUrl":null,"url":null,"abstract":"Mesoporous systems are ubiquitous in membrane science and applications due to\ntheir high internal surface area and tunable pore size. A new synthesis pathway\nof hydrolytic ionosilica films with mesopores formed by ionic liquid (IL)\ntemplating is proposed and compared to the traditional non-hydrolytic strategy.\nFor both pathways, the multi-scale formation of pores has been studied as a\nfunction of IL content, combining results of thermogravimetric analysis (TGA),\nnitrogen sorption, and small-angle X-ray scattering (SAXS). The combination of\nTGA and nitrogen sorption provides access to ionosilica and pore volume\nfractions, with contributions of meso- and macropores. We then elaborate an\noriginal and quantitative geometrical model to analyze the SAXS data based on\nsmall spheres (Rs = 1 -- 2 nm) and cylinders (Lcyl = 10 -- 20 nm) with radial\npolydispersity provided by the nitrogen sorption isotherms. As a main result,\nwe found that for a given incorporation of templating IL, both synthesis\npathways produce very similar pore geometries, but the better incorporation\nefficacy of the new hydrolytic films provides a higher mesoporosity. Our\ncombined study provides a coherent view of mesopore geometry, and thereby an\noptimization pathway of porous ionic membranes in terms of accessible\nmesoporosity contributing to the specific surface. Possible applications\ninclude electrolyte membranes of improved ionic properties, e.g., in fuel cells\nand batteries, as well as molecular storage.","PeriodicalId":501146,"journal":{"name":"arXiv - PHYS - Soft Condensed Matter","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Controlled formation of multi-scale porosity in ionosilica templated by ionic liquid\",\"authors\":\"Shilpa SharmaL2C, Julian OberdisseL2C, Johan AlauzunICGM ICMMM, Philippe Dieudonné-George, Thomas Bizien, Cansu Akkaya, Peter Hesemann, Anne-Caroline Genix\",\"doi\":\"arxiv-2409.04051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mesoporous systems are ubiquitous in membrane science and applications due to\\ntheir high internal surface area and tunable pore size. A new synthesis pathway\\nof hydrolytic ionosilica films with mesopores formed by ionic liquid (IL)\\ntemplating is proposed and compared to the traditional non-hydrolytic strategy.\\nFor both pathways, the multi-scale formation of pores has been studied as a\\nfunction of IL content, combining results of thermogravimetric analysis (TGA),\\nnitrogen sorption, and small-angle X-ray scattering (SAXS). The combination of\\nTGA and nitrogen sorption provides access to ionosilica and pore volume\\nfractions, with contributions of meso- and macropores. We then elaborate an\\noriginal and quantitative geometrical model to analyze the SAXS data based on\\nsmall spheres (Rs = 1 -- 2 nm) and cylinders (Lcyl = 10 -- 20 nm) with radial\\npolydispersity provided by the nitrogen sorption isotherms. As a main result,\\nwe found that for a given incorporation of templating IL, both synthesis\\npathways produce very similar pore geometries, but the better incorporation\\nefficacy of the new hydrolytic films provides a higher mesoporosity. Our\\ncombined study provides a coherent view of mesopore geometry, and thereby an\\noptimization pathway of porous ionic membranes in terms of accessible\\nmesoporosity contributing to the specific surface. Possible applications\\ninclude electrolyte membranes of improved ionic properties, e.g., in fuel cells\\nand batteries, as well as molecular storage.\",\"PeriodicalId\":501146,\"journal\":{\"name\":\"arXiv - PHYS - Soft Condensed Matter\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Soft Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04051\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04051","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于具有高内表面积和可调孔径,介孔系统在膜科学和应用中无处不在。结合热重分析 (TGA)、氮吸附和小角 X 射线散射 (SAXS) 的结果,研究了这两种途径中孔隙的多尺度形成与 IL 含量的函数关系。结合热重分析和氮吸附,可以获得离子硅和孔隙体积分数,以及中孔和大孔的贡献。然后,我们根据氮吸附等温线提供的具有径向多分散性的小球体(Rs = 1 - 2 nm)和圆柱体(Lcyl = 10 - 20 nm),建立了一个原创的定量几何模型来分析 SAXS 数据。我们发现,对于给定的模板惰性离子的掺入量,两种合成途径产生的孔隙几何形状非常相似,但新型水解膜的掺入效率更高,中孔率也更高。我们的综合研究为中孔几何提供了一个连贯的视角,从而为多孔离子膜的优化途径提供了一个有助于比表面的可获得中孔率。可能的应用包括改善离子特性的电解质膜,如燃料电池和电池,以及分子存储。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Controlled formation of multi-scale porosity in ionosilica templated by ionic liquid
Mesoporous systems are ubiquitous in membrane science and applications due to their high internal surface area and tunable pore size. A new synthesis pathway of hydrolytic ionosilica films with mesopores formed by ionic liquid (IL) templating is proposed and compared to the traditional non-hydrolytic strategy. For both pathways, the multi-scale formation of pores has been studied as a function of IL content, combining results of thermogravimetric analysis (TGA), nitrogen sorption, and small-angle X-ray scattering (SAXS). The combination of TGA and nitrogen sorption provides access to ionosilica and pore volume fractions, with contributions of meso- and macropores. We then elaborate an original and quantitative geometrical model to analyze the SAXS data based on small spheres (Rs = 1 -- 2 nm) and cylinders (Lcyl = 10 -- 20 nm) with radial polydispersity provided by the nitrogen sorption isotherms. As a main result, we found that for a given incorporation of templating IL, both synthesis pathways produce very similar pore geometries, but the better incorporation efficacy of the new hydrolytic films provides a higher mesoporosity. Our combined study provides a coherent view of mesopore geometry, and thereby an optimization pathway of porous ionic membranes in terms of accessible mesoporosity contributing to the specific surface. Possible applications include electrolyte membranes of improved ionic properties, e.g., in fuel cells and batteries, as well as molecular storage.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信