拓扑群中的带状相位

Charles R. Packard, Daniel M. Sussman
{"title":"拓扑群中的带状相位","authors":"Charles R. Packard, Daniel M. Sussman","doi":"arxiv-2409.05198","DOIUrl":null,"url":null,"abstract":"Flocking phase transitions found in models of polar active matter are\nparadigmatic examples of active phase transitions in soft matter. An\ninteresting specialization of flocking models concerns a ``topological'' vs\n``metric'' choice by which agents are considered to be interacting neighbors.\nWhile recent theoretical work suggests that the order-disorder transition in\nthese polar aligning models is universally first order, numerical studies have\nsuggested that topological models may instead have a continuous transition.\nSome recent simulations have found that some variations of topologically\ninteracting flocking agents have a discontinuous transition, but unambiguous\nobservations of phase coexistence using common Voronoi-based alignment remains\nelusive. In this work, we use a custom GPU-accelerated simulation package to\nperform million-particle-scale simulations of these Voronoi-Vicsek flocking\nmodels. By accessing such large systems on appropriately long time scales, we\nare able to show that a regime of stable phase coexistence between the ordered\nand disordered phases, confirming the discontinuous nature of this transition\nin the thermodynamic limit.","PeriodicalId":501146,"journal":{"name":"arXiv - PHYS - Soft Condensed Matter","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Banded phases in topological flocks\",\"authors\":\"Charles R. Packard, Daniel M. Sussman\",\"doi\":\"arxiv-2409.05198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Flocking phase transitions found in models of polar active matter are\\nparadigmatic examples of active phase transitions in soft matter. An\\ninteresting specialization of flocking models concerns a ``topological'' vs\\n``metric'' choice by which agents are considered to be interacting neighbors.\\nWhile recent theoretical work suggests that the order-disorder transition in\\nthese polar aligning models is universally first order, numerical studies have\\nsuggested that topological models may instead have a continuous transition.\\nSome recent simulations have found that some variations of topologically\\ninteracting flocking agents have a discontinuous transition, but unambiguous\\nobservations of phase coexistence using common Voronoi-based alignment remains\\nelusive. In this work, we use a custom GPU-accelerated simulation package to\\nperform million-particle-scale simulations of these Voronoi-Vicsek flocking\\nmodels. By accessing such large systems on appropriately long time scales, we\\nare able to show that a regime of stable phase coexistence between the ordered\\nand disordered phases, confirming the discontinuous nature of this transition\\nin the thermodynamic limit.\",\"PeriodicalId\":501146,\"journal\":{\"name\":\"arXiv - PHYS - Soft Condensed Matter\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Soft Condensed Matter\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Soft Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

极性活性物质模型中发现的成群相变是软物质活性相变的典型例子。成群模型的一个有趣的特殊化涉及 "拓扑 "与 "度量 "的选择,即哪些物剂被认为是相互作用的邻物。虽然最近的理论工作表明,这些极性对齐模型中的有序-无序转变普遍是一阶的,但数值研究表明,拓扑模型可能具有连续转变。最近的一些模拟发现,拓扑学上相互作用的成群物的某些变体具有不连续的转变,但使用普通的基于 Voronoi 的排列方式对相位共存的明确观察仍未发现。在这项工作中,我们使用定制的 GPU 加速仿真软件包对这些 Voronoi-Vicsek 蜂拥模型进行了百万粒子级的仿真。通过在适当长的时间尺度上访问这种大型系统,我们能够证明有序相与无序相之间存在稳定的共存机制,证实了这种转变在热力学极限中的非连续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Banded phases in topological flocks
Flocking phase transitions found in models of polar active matter are paradigmatic examples of active phase transitions in soft matter. An interesting specialization of flocking models concerns a ``topological'' vs ``metric'' choice by which agents are considered to be interacting neighbors. While recent theoretical work suggests that the order-disorder transition in these polar aligning models is universally first order, numerical studies have suggested that topological models may instead have a continuous transition. Some recent simulations have found that some variations of topologically interacting flocking agents have a discontinuous transition, but unambiguous observations of phase coexistence using common Voronoi-based alignment remains elusive. In this work, we use a custom GPU-accelerated simulation package to perform million-particle-scale simulations of these Voronoi-Vicsek flocking models. By accessing such large systems on appropriately long time scales, we are able to show that a regime of stable phase coexistence between the ordered and disordered phases, confirming the discontinuous nature of this transition in the thermodynamic limit.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信