论戈伦斯坦理想和弗罗贝尼斯幂的 $$\textrm{v}$ 数

IF 1 3区 数学 Q1 MATHEMATICS
Kamalesh Saha, Nirmal Kotal
{"title":"论戈伦斯坦理想和弗罗贝尼斯幂的 $$\\textrm{v}$ 数","authors":"Kamalesh Saha, Nirmal Kotal","doi":"10.1007/s40840-024-01763-8","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we show the equality of the (local) <span>\\(\\textrm{v}\\)</span>-number and Castelnuovo-Mumford regularity of certain classes of Gorenstein algebras, including the class of Gorenstein monomial algebras. Also, for the same classes of algebras with the assumption of level, we show that the (local) <span>\\(\\textrm{v}\\)</span>-number serves as an upper bound for the regularity. As an application, we get the equality between the <span>\\({{\\,\\mathrm{\\textrm{v}}\\,}}\\)</span>-number and regularity for Stanley-Reisner rings of matroid complexes. Furthermore, this paper investigates the <span>\\(\\textrm{v}\\)</span>-number of Frobenius powers of graded ideals in prime characteristic setup. In this direction, we demonstrate that the <span>\\(\\textrm{v}\\)</span>-numbers of Frobenius powers of graded ideals have an asymptotically linear behaviour. In the case of unmixed monomial ideals, we provide a method for computing the <span>\\(\\textrm{v}\\)</span>-number without prior knowledge of the associated primes.</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"111 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the $$\\\\textrm{v}$$ -number of Gorenstein Ideals and Frobenius Powers\",\"authors\":\"Kamalesh Saha, Nirmal Kotal\",\"doi\":\"10.1007/s40840-024-01763-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we show the equality of the (local) <span>\\\\(\\\\textrm{v}\\\\)</span>-number and Castelnuovo-Mumford regularity of certain classes of Gorenstein algebras, including the class of Gorenstein monomial algebras. Also, for the same classes of algebras with the assumption of level, we show that the (local) <span>\\\\(\\\\textrm{v}\\\\)</span>-number serves as an upper bound for the regularity. As an application, we get the equality between the <span>\\\\({{\\\\,\\\\mathrm{\\\\textrm{v}}\\\\,}}\\\\)</span>-number and regularity for Stanley-Reisner rings of matroid complexes. Furthermore, this paper investigates the <span>\\\\(\\\\textrm{v}\\\\)</span>-number of Frobenius powers of graded ideals in prime characteristic setup. In this direction, we demonstrate that the <span>\\\\(\\\\textrm{v}\\\\)</span>-numbers of Frobenius powers of graded ideals have an asymptotically linear behaviour. In the case of unmixed monomial ideals, we provide a method for computing the <span>\\\\(\\\\textrm{v}\\\\)</span>-number without prior knowledge of the associated primes.</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"111 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01763-8\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01763-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们证明了(局部)\(\textrm{v}\)-数与某些类戈伦斯坦代数(包括类戈伦斯坦单项式代数)的卡斯特努沃-芒福德正则性是相等的。同时,对于具有水平假设的同类代数,我们证明了(局部)\(\textrm{v}\)-数是正则性的上限。作为应用,我们得到了矩阵复数的斯坦利-赖斯纳环的({{\,\mathrm{textrm{v}}\,}})数与正则性之间的相等关系。此外,本文还研究了素特性设置中分级理想的弗罗贝尼斯幂的(textrm{v})数。在这个方向上,我们证明了分级理想的 Frobenius 幂的(\textrm{v})数具有渐近线性行为。在无混合单项式理想的情况下,我们提供了一种计算 (\textrm{v})数的方法,而无需事先知道相关的素数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the $$\textrm{v}$$ -number of Gorenstein Ideals and Frobenius Powers

In this paper, we show the equality of the (local) \(\textrm{v}\)-number and Castelnuovo-Mumford regularity of certain classes of Gorenstein algebras, including the class of Gorenstein monomial algebras. Also, for the same classes of algebras with the assumption of level, we show that the (local) \(\textrm{v}\)-number serves as an upper bound for the regularity. As an application, we get the equality between the \({{\,\mathrm{\textrm{v}}\,}}\)-number and regularity for Stanley-Reisner rings of matroid complexes. Furthermore, this paper investigates the \(\textrm{v}\)-number of Frobenius powers of graded ideals in prime characteristic setup. In this direction, we demonstrate that the \(\textrm{v}\)-numbers of Frobenius powers of graded ideals have an asymptotically linear behaviour. In the case of unmixed monomial ideals, we provide a method for computing the \(\textrm{v}\)-number without prior knowledge of the associated primes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信