Jana Sádecká, Katarína Hroboňová, Michaela Jakubíková
{"title":"同步荧光光谱法是预测葡萄酒白兰地和甜葡萄酒中抗氧化剂活性的绿色方法","authors":"Jana Sádecká, Katarína Hroboňová, Michaela Jakubíková","doi":"10.1007/s11947-024-03591-x","DOIUrl":null,"url":null,"abstract":"<p>The official method for the determination of antioxidant activity in beverages is 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, which requires toxic reagents, is laborious, and produces waste. The aim of this work was to develop a more eco‑friendly method for the prediction of antioxidant activity in wine brandy and sweet wine using synchronous fluorescence spectra (SFS). In scanning of bulk and diluted samples, the excitation wavelength was varied from 250 to 500 nm and the wavelength interval was ranged from 20 to 100 nm. Partial least squares (PLS) regression was done on individual SFS, on unfolded SFS and on variables selected by the variable importance in the projection (VIP) algorithm, while the DPPH assay was the reference method. VIP-PLS modeling of the SFS of diluted samples led to better performance characteristics of the regression models. The best VIP-PLS model for wine brandy with relative predictive deviation (RPD) of 3.9 was based on 62 variables (the wavelength interval from 80 to 100 nm and the excitation wavelength from 290 to 320 nm). The best VIP-PLS model for sweet wine with RPD of 4.2 was calculated on 108 variables (the wavelength interval from 60 to 100 nm and the excitation wavelength from 260 to 290 nm). RPD values above 3.5 indicated very good prediction accuracy obtained by VIP-PLS models. Analytical GREEnness (AGREE) score 0.74 confirmed a high level of greenness of the proposed method.</p>","PeriodicalId":562,"journal":{"name":"Food and Bioprocess Technology","volume":"9 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchronous Fluorescence Spectroscopy as a Green Method for the Prediction of Antioxidant Activity in Wine Brandy and Sweet Wine\",\"authors\":\"Jana Sádecká, Katarína Hroboňová, Michaela Jakubíková\",\"doi\":\"10.1007/s11947-024-03591-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The official method for the determination of antioxidant activity in beverages is 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, which requires toxic reagents, is laborious, and produces waste. The aim of this work was to develop a more eco‑friendly method for the prediction of antioxidant activity in wine brandy and sweet wine using synchronous fluorescence spectra (SFS). In scanning of bulk and diluted samples, the excitation wavelength was varied from 250 to 500 nm and the wavelength interval was ranged from 20 to 100 nm. Partial least squares (PLS) regression was done on individual SFS, on unfolded SFS and on variables selected by the variable importance in the projection (VIP) algorithm, while the DPPH assay was the reference method. VIP-PLS modeling of the SFS of diluted samples led to better performance characteristics of the regression models. The best VIP-PLS model for wine brandy with relative predictive deviation (RPD) of 3.9 was based on 62 variables (the wavelength interval from 80 to 100 nm and the excitation wavelength from 290 to 320 nm). The best VIP-PLS model for sweet wine with RPD of 4.2 was calculated on 108 variables (the wavelength interval from 60 to 100 nm and the excitation wavelength from 260 to 290 nm). RPD values above 3.5 indicated very good prediction accuracy obtained by VIP-PLS models. Analytical GREEnness (AGREE) score 0.74 confirmed a high level of greenness of the proposed method.</p>\",\"PeriodicalId\":562,\"journal\":{\"name\":\"Food and Bioprocess Technology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Food and Bioprocess Technology\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s11947-024-03591-x\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"FOOD SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Food and Bioprocess Technology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11947-024-03591-x","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"FOOD SCIENCE & TECHNOLOGY","Score":null,"Total":0}
Synchronous Fluorescence Spectroscopy as a Green Method for the Prediction of Antioxidant Activity in Wine Brandy and Sweet Wine
The official method for the determination of antioxidant activity in beverages is 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, which requires toxic reagents, is laborious, and produces waste. The aim of this work was to develop a more eco‑friendly method for the prediction of antioxidant activity in wine brandy and sweet wine using synchronous fluorescence spectra (SFS). In scanning of bulk and diluted samples, the excitation wavelength was varied from 250 to 500 nm and the wavelength interval was ranged from 20 to 100 nm. Partial least squares (PLS) regression was done on individual SFS, on unfolded SFS and on variables selected by the variable importance in the projection (VIP) algorithm, while the DPPH assay was the reference method. VIP-PLS modeling of the SFS of diluted samples led to better performance characteristics of the regression models. The best VIP-PLS model for wine brandy with relative predictive deviation (RPD) of 3.9 was based on 62 variables (the wavelength interval from 80 to 100 nm and the excitation wavelength from 290 to 320 nm). The best VIP-PLS model for sweet wine with RPD of 4.2 was calculated on 108 variables (the wavelength interval from 60 to 100 nm and the excitation wavelength from 260 to 290 nm). RPD values above 3.5 indicated very good prediction accuracy obtained by VIP-PLS models. Analytical GREEnness (AGREE) score 0.74 confirmed a high level of greenness of the proposed method.
期刊介绍:
Food and Bioprocess Technology provides an effective and timely platform for cutting-edge high quality original papers in the engineering and science of all types of food processing technologies, from the original food supply source to the consumer’s dinner table. It aims to be a leading international journal for the multidisciplinary agri-food research community.
The journal focuses especially on experimental or theoretical research findings that have the potential for helping the agri-food industry to improve process efficiency, enhance product quality and, extend shelf-life of fresh and processed agri-food products. The editors present critical reviews on new perspectives to established processes, innovative and emerging technologies, and trends and future research in food and bioproducts processing. The journal also publishes short communications for rapidly disseminating preliminary results, letters to the Editor on recent developments and controversy, and book reviews.