Jing Gan;Qiao Yang;Dapeng Zhang;Linheng Li;Xu Qu;Bin Ran
{"title":"基于 Voronoi- 的时空图卷积网络,用于考虑地理空间分布的交通事故预测","authors":"Jing Gan;Qiao Yang;Dapeng Zhang;Linheng Li;Xu Qu;Bin Ran","doi":"10.1109/TITS.2024.3452275","DOIUrl":null,"url":null,"abstract":"Accurately predicting the probability of crashes is crucial for preventing traffic crashes and mitigating their impacts. However, the imbalance in crash data, irregular road network structures, and heterogeneity in multi-source data pose significant challenges. To address these issues, this study introduces a spatio-temporal graph convolutional network traffic crash prediction model based on Voronoi diagrams that considers geographical spatial distribution. Initially, this study introduces a spatial partitioning method based on Voronoi diagrams, grounded on the geographic spatial distribution characteristics of traffic crashes. It constructs a novel graph structure with spatial units within Voronoi diagrams as nodes and the shared length of different road types between units as edges. This graph structure integrates the spatial distribution characteristics of crashes with the graph structure, substantially contributing to addressing the zero-inflation problem inherent in spatial units constructed on a grid basis. Subsequently, the study employs a GCN (Graph Convolutional Network) and Transformer encoder to build the VSTGCN (Voronoi-Based Spatio-Temporal Graph Convolutional Network) crash prediction model, evaluating its effectiveness using real data from New York City. Comparisons with eight baseline models demonstrate that VSTGCN outperforms them in all evaluation metrics. Moreover, the paper conducts model ablation studies from different perspectives, such as feature modules and graph structure composition, revealing that the chosen spatial, temporal, and spatio-temporal features significantly influence the model’s predictive performance, with spatial features having the most substantial impact. Finally, the novel graph structure based on Voronoi diagrams proposed in this study shows a clear advantage in model effectiveness compared to traditional graph structures. This research can effectively handle complex crash data structures and accurately predict crash probabilities, providing a reliable basis for developing measures to prevent crashes and alleviate their impacts.","PeriodicalId":13416,"journal":{"name":"IEEE Transactions on Intelligent Transportation Systems","volume":"25 12","pages":"21723-21736"},"PeriodicalIF":7.9000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Voronoi-Based Spatio-Temporal Graph Convolutional Network for Traffic Crash Prediction Considering Geographical Spatial Distributions\",\"authors\":\"Jing Gan;Qiao Yang;Dapeng Zhang;Linheng Li;Xu Qu;Bin Ran\",\"doi\":\"10.1109/TITS.2024.3452275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurately predicting the probability of crashes is crucial for preventing traffic crashes and mitigating their impacts. However, the imbalance in crash data, irregular road network structures, and heterogeneity in multi-source data pose significant challenges. To address these issues, this study introduces a spatio-temporal graph convolutional network traffic crash prediction model based on Voronoi diagrams that considers geographical spatial distribution. Initially, this study introduces a spatial partitioning method based on Voronoi diagrams, grounded on the geographic spatial distribution characteristics of traffic crashes. It constructs a novel graph structure with spatial units within Voronoi diagrams as nodes and the shared length of different road types between units as edges. This graph structure integrates the spatial distribution characteristics of crashes with the graph structure, substantially contributing to addressing the zero-inflation problem inherent in spatial units constructed on a grid basis. Subsequently, the study employs a GCN (Graph Convolutional Network) and Transformer encoder to build the VSTGCN (Voronoi-Based Spatio-Temporal Graph Convolutional Network) crash prediction model, evaluating its effectiveness using real data from New York City. Comparisons with eight baseline models demonstrate that VSTGCN outperforms them in all evaluation metrics. Moreover, the paper conducts model ablation studies from different perspectives, such as feature modules and graph structure composition, revealing that the chosen spatial, temporal, and spatio-temporal features significantly influence the model’s predictive performance, with spatial features having the most substantial impact. Finally, the novel graph structure based on Voronoi diagrams proposed in this study shows a clear advantage in model effectiveness compared to traditional graph structures. This research can effectively handle complex crash data structures and accurately predict crash probabilities, providing a reliable basis for developing measures to prevent crashes and alleviate their impacts.\",\"PeriodicalId\":13416,\"journal\":{\"name\":\"IEEE Transactions on Intelligent Transportation Systems\",\"volume\":\"25 12\",\"pages\":\"21723-21736\"},\"PeriodicalIF\":7.9000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Intelligent Transportation Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10675346/\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Intelligent Transportation Systems","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10675346/","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
A Novel Voronoi-Based Spatio-Temporal Graph Convolutional Network for Traffic Crash Prediction Considering Geographical Spatial Distributions
Accurately predicting the probability of crashes is crucial for preventing traffic crashes and mitigating their impacts. However, the imbalance in crash data, irregular road network structures, and heterogeneity in multi-source data pose significant challenges. To address these issues, this study introduces a spatio-temporal graph convolutional network traffic crash prediction model based on Voronoi diagrams that considers geographical spatial distribution. Initially, this study introduces a spatial partitioning method based on Voronoi diagrams, grounded on the geographic spatial distribution characteristics of traffic crashes. It constructs a novel graph structure with spatial units within Voronoi diagrams as nodes and the shared length of different road types between units as edges. This graph structure integrates the spatial distribution characteristics of crashes with the graph structure, substantially contributing to addressing the zero-inflation problem inherent in spatial units constructed on a grid basis. Subsequently, the study employs a GCN (Graph Convolutional Network) and Transformer encoder to build the VSTGCN (Voronoi-Based Spatio-Temporal Graph Convolutional Network) crash prediction model, evaluating its effectiveness using real data from New York City. Comparisons with eight baseline models demonstrate that VSTGCN outperforms them in all evaluation metrics. Moreover, the paper conducts model ablation studies from different perspectives, such as feature modules and graph structure composition, revealing that the chosen spatial, temporal, and spatio-temporal features significantly influence the model’s predictive performance, with spatial features having the most substantial impact. Finally, the novel graph structure based on Voronoi diagrams proposed in this study shows a clear advantage in model effectiveness compared to traditional graph structures. This research can effectively handle complex crash data structures and accurately predict crash probabilities, providing a reliable basis for developing measures to prevent crashes and alleviate their impacts.
期刊介绍:
The theoretical, experimental and operational aspects of electrical and electronics engineering and information technologies as applied to Intelligent Transportation Systems (ITS). Intelligent Transportation Systems are defined as those systems utilizing synergistic technologies and systems engineering concepts to develop and improve transportation systems of all kinds. The scope of this interdisciplinary activity includes the promotion, consolidation and coordination of ITS technical activities among IEEE entities, and providing a focus for cooperative activities, both internally and externally.