局部有界有理函数的几何学

Victor Delage, Goulwen Fichou, Aftab Patel
{"title":"局部有界有理函数的几何学","authors":"Victor Delage, Goulwen Fichou, Aftab Patel","doi":"arxiv-2409.04232","DOIUrl":null,"url":null,"abstract":"This paper develops the geometry of rational functions on non-singular real\nalgebraic varieties that are locally bounded. First various basic geometric and\nalgebraic results regarding these functions are established in any dimension,\nculminating with a version of {\\L}ojasiewicz's inequality. The geometry is\nfurther developed for the case of dimension 2, where it can be shown that there\nexist many of the usual correspondences between the algebra and geometry of\nthese functions that one expects from complex algebraic geometry and from other\nclasses of functions in real algebraic geometry such as regulous functions.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Geometry of Locally Bounded Rational Functions\",\"authors\":\"Victor Delage, Goulwen Fichou, Aftab Patel\",\"doi\":\"arxiv-2409.04232\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops the geometry of rational functions on non-singular real\\nalgebraic varieties that are locally bounded. First various basic geometric and\\nalgebraic results regarding these functions are established in any dimension,\\nculminating with a version of {\\\\L}ojasiewicz's inequality. The geometry is\\nfurther developed for the case of dimension 2, where it can be shown that there\\nexist many of the usual correspondences between the algebra and geometry of\\nthese functions that one expects from complex algebraic geometry and from other\\nclasses of functions in real algebraic geometry such as regulous functions.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"5 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04232\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04232","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文发展了非奇异实代数品种上局部有界的有理函数的几何。首先,在任意维度上建立了关于这些函数的各种基本几何和代数结果,最后提出了{\L}ojasiewicz不等式的一个版本。几何结果在维数为 2 的情况下得到进一步发展,可以证明这些函数的代数与几何之间存在着许多通常的对应关系,这些对应关系是人们从复代数几何以及实代数几何中的其他类函数(如回归函数)中所期望得到的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Geometry of Locally Bounded Rational Functions
This paper develops the geometry of rational functions on non-singular real algebraic varieties that are locally bounded. First various basic geometric and algebraic results regarding these functions are established in any dimension, culminating with a version of {\L}ojasiewicz's inequality. The geometry is further developed for the case of dimension 2, where it can be shown that there exist many of the usual correspondences between the algebra and geometry of these functions that one expects from complex algebraic geometry and from other classes of functions in real algebraic geometry such as regulous functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信