正特征中二属行列式变种的纳什炸裂

Thaís M. Dalbelo, Daniel Duarte, Maria Aparecida Soares Ruas
{"title":"正特征中二属行列式变种的纳什炸裂","authors":"Thaís M. Dalbelo, Daniel Duarte, Maria Aparecida Soares Ruas","doi":"arxiv-2409.04688","DOIUrl":null,"url":null,"abstract":"We show that the Nash blowup of 2-generic determinantal varieties over fields\nof positive characteristic is non-singular. We prove this in two steps.\nFirstly, we explicitly describe the toric structure of such varieties.\nSecondly, we show that in this case the combinatorics of Nash blowups are free\nof characteristic. The result then follows from the analogous result in\ncharacteristic zero proved by W. Ebeling and S. M. Gusein-Zade.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nash blowups of 2-generic determinantal varieties in positive characteristic\",\"authors\":\"Thaís M. Dalbelo, Daniel Duarte, Maria Aparecida Soares Ruas\",\"doi\":\"arxiv-2409.04688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Nash blowup of 2-generic determinantal varieties over fields\\nof positive characteristic is non-singular. We prove this in two steps.\\nFirstly, we explicitly describe the toric structure of such varieties.\\nSecondly, we show that in this case the combinatorics of Nash blowups are free\\nof characteristic. The result then follows from the analogous result in\\ncharacteristic zero proved by W. Ebeling and S. M. Gusein-Zade.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了在正特征域上的二元行列式变种的纳什炸裂是非星形的。我们分两步证明这一点:首先,我们明确描述了此类变体的环状结构;其次,我们证明在这种情况下,纳什炸裂的组合学是无特征的。这一结果来自 W. Ebeling 和 S. M. Gusein-Zade 所证明的特性为零的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nash blowups of 2-generic determinantal varieties in positive characteristic
We show that the Nash blowup of 2-generic determinantal varieties over fields of positive characteristic is non-singular. We prove this in two steps. Firstly, we explicitly describe the toric structure of such varieties. Secondly, we show that in this case the combinatorics of Nash blowups are free of characteristic. The result then follows from the analogous result in characteristic zero proved by W. Ebeling and S. M. Gusein-Zade.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信