Thaís M. Dalbelo, Daniel Duarte, Maria Aparecida Soares Ruas
{"title":"正特征中二属行列式变种的纳什炸裂","authors":"Thaís M. Dalbelo, Daniel Duarte, Maria Aparecida Soares Ruas","doi":"arxiv-2409.04688","DOIUrl":null,"url":null,"abstract":"We show that the Nash blowup of 2-generic determinantal varieties over fields\nof positive characteristic is non-singular. We prove this in two steps.\nFirstly, we explicitly describe the toric structure of such varieties.\nSecondly, we show that in this case the combinatorics of Nash blowups are free\nof characteristic. The result then follows from the analogous result in\ncharacteristic zero proved by W. Ebeling and S. M. Gusein-Zade.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"172 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nash blowups of 2-generic determinantal varieties in positive characteristic\",\"authors\":\"Thaís M. Dalbelo, Daniel Duarte, Maria Aparecida Soares Ruas\",\"doi\":\"arxiv-2409.04688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that the Nash blowup of 2-generic determinantal varieties over fields\\nof positive characteristic is non-singular. We prove this in two steps.\\nFirstly, we explicitly describe the toric structure of such varieties.\\nSecondly, we show that in this case the combinatorics of Nash blowups are free\\nof characteristic. The result then follows from the analogous result in\\ncharacteristic zero proved by W. Ebeling and S. M. Gusein-Zade.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"172 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们证明了在正特征域上的二元行列式变种的纳什炸裂是非星形的。我们分两步证明这一点:首先,我们明确描述了此类变体的环状结构;其次,我们证明在这种情况下,纳什炸裂的组合学是无特征的。这一结果来自 W. Ebeling 和 S. M. Gusein-Zade 所证明的特性为零的类似结果。
Nash blowups of 2-generic determinantal varieties in positive characteristic
We show that the Nash blowup of 2-generic determinantal varieties over fields
of positive characteristic is non-singular. We prove this in two steps.
Firstly, we explicitly describe the toric structure of such varieties.
Secondly, we show that in this case the combinatorics of Nash blowups are free
of characteristic. The result then follows from the analogous result in
characteristic zero proved by W. Ebeling and S. M. Gusein-Zade.