直接图像的最小扩展特性

Chen Zhao
{"title":"直接图像的最小扩展特性","authors":"Chen Zhao","doi":"arxiv-2409.04754","DOIUrl":null,"url":null,"abstract":"Given a projective morphism $f:X\\to Y$ from a complex space to a complex\nmanifold, we prove the Griffiths semi-positivity and minimal extension property\nof the direct image sheaf $f_\\ast(\\mathscr{F})$. Here, $\\mathscr{F}$ is a\ncoherent sheaf on $X$, which consists of the Grauert-Riemenschneider dualizing\nsheaf, a multiplier ideal sheaf, and a variation of Hodge structure (or more\ngenerally, a tame harmonic bundle).","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"09 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal extension property of direct images\",\"authors\":\"Chen Zhao\",\"doi\":\"arxiv-2409.04754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a projective morphism $f:X\\\\to Y$ from a complex space to a complex\\nmanifold, we prove the Griffiths semi-positivity and minimal extension property\\nof the direct image sheaf $f_\\\\ast(\\\\mathscr{F})$. Here, $\\\\mathscr{F}$ is a\\ncoherent sheaf on $X$, which consists of the Grauert-Riemenschneider dualizing\\nsheaf, a multiplier ideal sheaf, and a variation of Hodge structure (or more\\ngenerally, a tame harmonic bundle).\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"09 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定一个从复数空间到复数manifold的投影态$f:X/to Y$,我们证明了直接映像舍弗$f_\ast(\mathscr{F})$的格里菲斯半正性和最小扩展性质。这里,$\mathscr{F}$是$X$上的相干舍弗,它由格拉尔特-李门施耐德对偶舍弗、乘法理想舍弗和霍奇结构的变体(或者更一般地说,驯服谐波束)组成。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimal extension property of direct images
Given a projective morphism $f:X\to Y$ from a complex space to a complex manifold, we prove the Griffiths semi-positivity and minimal extension property of the direct image sheaf $f_\ast(\mathscr{F})$. Here, $\mathscr{F}$ is a coherent sheaf on $X$, which consists of the Grauert-Riemenschneider dualizing sheaf, a multiplier ideal sheaf, and a variation of Hodge structure (or more generally, a tame harmonic bundle).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信