{"title":"直接图像的最小扩展特性","authors":"Chen Zhao","doi":"arxiv-2409.04754","DOIUrl":null,"url":null,"abstract":"Given a projective morphism $f:X\\to Y$ from a complex space to a complex\nmanifold, we prove the Griffiths semi-positivity and minimal extension property\nof the direct image sheaf $f_\\ast(\\mathscr{F})$. Here, $\\mathscr{F}$ is a\ncoherent sheaf on $X$, which consists of the Grauert-Riemenschneider dualizing\nsheaf, a multiplier ideal sheaf, and a variation of Hodge structure (or more\ngenerally, a tame harmonic bundle).","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"09 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimal extension property of direct images\",\"authors\":\"Chen Zhao\",\"doi\":\"arxiv-2409.04754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given a projective morphism $f:X\\\\to Y$ from a complex space to a complex\\nmanifold, we prove the Griffiths semi-positivity and minimal extension property\\nof the direct image sheaf $f_\\\\ast(\\\\mathscr{F})$. Here, $\\\\mathscr{F}$ is a\\ncoherent sheaf on $X$, which consists of the Grauert-Riemenschneider dualizing\\nsheaf, a multiplier ideal sheaf, and a variation of Hodge structure (or more\\ngenerally, a tame harmonic bundle).\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"09 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.04754\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04754","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Given a projective morphism $f:X\to Y$ from a complex space to a complex
manifold, we prove the Griffiths semi-positivity and minimal extension property
of the direct image sheaf $f_\ast(\mathscr{F})$. Here, $\mathscr{F}$ is a
coherent sheaf on $X$, which consists of the Grauert-Riemenschneider dualizing
sheaf, a multiplier ideal sheaf, and a variation of Hodge structure (or more
generally, a tame harmonic bundle).