有限几何中的横向自由度

Charlie Bruggemann, Vera Choi, Brian Freidin, Jaedon Whyte
{"title":"有限几何中的横向自由度","authors":"Charlie Bruggemann, Vera Choi, Brian Freidin, Jaedon Whyte","doi":"arxiv-2409.05248","DOIUrl":null,"url":null,"abstract":"We study projective curves and hypersurfaces defined over a finite field that\nare tangent to every member of a class of low-degree varieties. Extending\n2-dimensional work of Asgarli, we first explore the lowest degrees attainable\nby smooth hypersurfaces in $n$-dimensional projective space that are tangent to\nevery $k$-dimensional subspace, for some value of $n$ and $k$. We then study\nprojective surfaces that serve as models of finite inversive and hyperbolic\nplanes, finite analogs of spherical and hyperbolic geometries. In these\nsurfaces we construct curves tangent to each of the lowest degree curves\ndefined over the base field.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transverse-freeness in finite geometries\",\"authors\":\"Charlie Bruggemann, Vera Choi, Brian Freidin, Jaedon Whyte\",\"doi\":\"arxiv-2409.05248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study projective curves and hypersurfaces defined over a finite field that\\nare tangent to every member of a class of low-degree varieties. Extending\\n2-dimensional work of Asgarli, we first explore the lowest degrees attainable\\nby smooth hypersurfaces in $n$-dimensional projective space that are tangent to\\nevery $k$-dimensional subspace, for some value of $n$ and $k$. We then study\\nprojective surfaces that serve as models of finite inversive and hyperbolic\\nplanes, finite analogs of spherical and hyperbolic geometries. In these\\nsurfaces we construct curves tangent to each of the lowest degree curves\\ndefined over the base field.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究的是定义在有限域上的投影曲线和超曲面,它们与一类低度数品种的每个成员相切。在扩展阿斯加里的二维工作的基础上,我们首先探讨了在 $n$ 和 $k$ 的某个值下,$n$ 维投影空间中与每个 $k$ 维子空间相切的光滑超曲面所能达到的最低度数。然后,我们研究作为有限反转面和双曲面模型的投影面,它们是球面和双曲面几何的有限类似物。在这些曲面中,我们构建了与基域上定义的每条最低度曲线相切的曲线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transverse-freeness in finite geometries
We study projective curves and hypersurfaces defined over a finite field that are tangent to every member of a class of low-degree varieties. Extending 2-dimensional work of Asgarli, we first explore the lowest degrees attainable by smooth hypersurfaces in $n$-dimensional projective space that are tangent to every $k$-dimensional subspace, for some value of $n$ and $k$. We then study projective surfaces that serve as models of finite inversive and hyperbolic planes, finite analogs of spherical and hyperbolic geometries. In these surfaces we construct curves tangent to each of the lowest degree curves defined over the base field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信