反不变希格斯束的模量

Karim Réga
{"title":"反不变希格斯束的模量","authors":"Karim Réga","doi":"arxiv-2409.05793","DOIUrl":null,"url":null,"abstract":"We study the moduli of anti-invariant Higgs bundles as introduced by Zelaci.\nUsing recent existence results of Alper, Halpern-Leistner and Heinloth we\nestablish the existence of a separated good moduli space for semistable\nanti-invariant Higgs bundles. Along the way this produces a non-GIT proof of\nthe existence of a separated good moduli space for semistable Higgs bundles. We\nalso prove the properness of the Hitchin system in this setting.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moduli of Anti-Invariant Higgs Bundles\",\"authors\":\"Karim Réga\",\"doi\":\"arxiv-2409.05793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the moduli of anti-invariant Higgs bundles as introduced by Zelaci.\\nUsing recent existence results of Alper, Halpern-Leistner and Heinloth we\\nestablish the existence of a separated good moduli space for semistable\\nanti-invariant Higgs bundles. Along the way this produces a non-GIT proof of\\nthe existence of a separated good moduli space for semistable Higgs bundles. We\\nalso prove the properness of the Hitchin system in this setting.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了泽拉西(Zelaci)提出的反不变希格斯束的模空间。利用阿尔珀(Alper)、哈尔彭-莱斯特纳(Halpern-Leistner)和海因洛特(Heinloth)的最新存在性结果,我们证明了半可变反不变希格斯束的分离良好模空间的存在性。同时,我们还证明了半可变希格斯束的分离良好模空间的适当性。我们还证明了希钦系统在这种情况下的适当性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moduli of Anti-Invariant Higgs Bundles
We study the moduli of anti-invariant Higgs bundles as introduced by Zelaci. Using recent existence results of Alper, Halpern-Leistner and Heinloth we establish the existence of a separated good moduli space for semistable anti-invariant Higgs bundles. Along the way this produces a non-GIT proof of the existence of a separated good moduli space for semistable Higgs bundles. We also prove the properness of the Hitchin system in this setting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信