{"title":"反不变希格斯束的模量","authors":"Karim Réga","doi":"arxiv-2409.05793","DOIUrl":null,"url":null,"abstract":"We study the moduli of anti-invariant Higgs bundles as introduced by Zelaci.\nUsing recent existence results of Alper, Halpern-Leistner and Heinloth we\nestablish the existence of a separated good moduli space for semistable\nanti-invariant Higgs bundles. Along the way this produces a non-GIT proof of\nthe existence of a separated good moduli space for semistable Higgs bundles. We\nalso prove the properness of the Hitchin system in this setting.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moduli of Anti-Invariant Higgs Bundles\",\"authors\":\"Karim Réga\",\"doi\":\"arxiv-2409.05793\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the moduli of anti-invariant Higgs bundles as introduced by Zelaci.\\nUsing recent existence results of Alper, Halpern-Leistner and Heinloth we\\nestablish the existence of a separated good moduli space for semistable\\nanti-invariant Higgs bundles. Along the way this produces a non-GIT proof of\\nthe existence of a separated good moduli space for semistable Higgs bundles. We\\nalso prove the properness of the Hitchin system in this setting.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.05793\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05793","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We study the moduli of anti-invariant Higgs bundles as introduced by Zelaci.
Using recent existence results of Alper, Halpern-Leistner and Heinloth we
establish the existence of a separated good moduli space for semistable
anti-invariant Higgs bundles. Along the way this produces a non-GIT proof of
the existence of a separated good moduli space for semistable Higgs bundles. We
also prove the properness of the Hitchin system in this setting.