{"title":"加权投影堆栈中非凸完全相交的格罗莫夫--维滕不变式","authors":"Felix Janda, Nawaz Sultani, Yang Zhou","doi":"arxiv-2409.06193","DOIUrl":null,"url":null,"abstract":"In this paper we compute genus 0 orbifold Gromov--Witten invariants of\nCalabi--Yau threefold complete intersections in weighted projective stacks,\nregardless of convexity conditions. The traditional quantumn Lefschetz\nprinciple may fail even for invariants with ambient insertions. Using quasimap\nwall-crossing, we are able to compute invariants with insertions from a\nspecific subring of the Chen--Ruan cohomology, which contains all the ambient\ncohomology classes. Quasimap wall-crossing gives a mirror theorem expressing the I-function in\nterms of the J-function via a mirror map. The key of this paper is to find a\nsuitable GIT presentation of the target space, so that the mirror map is\ninvertible. An explicit formula for the I-function is given for all those\ntarget spaces and many examples with explicit computations of invariants are\nprovided.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Gromov--Witten Invariants of Non-Convex Complete Intersections in Weighted Projective Stacks\",\"authors\":\"Felix Janda, Nawaz Sultani, Yang Zhou\",\"doi\":\"arxiv-2409.06193\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we compute genus 0 orbifold Gromov--Witten invariants of\\nCalabi--Yau threefold complete intersections in weighted projective stacks,\\nregardless of convexity conditions. The traditional quantumn Lefschetz\\nprinciple may fail even for invariants with ambient insertions. Using quasimap\\nwall-crossing, we are able to compute invariants with insertions from a\\nspecific subring of the Chen--Ruan cohomology, which contains all the ambient\\ncohomology classes. Quasimap wall-crossing gives a mirror theorem expressing the I-function in\\nterms of the J-function via a mirror map. The key of this paper is to find a\\nsuitable GIT presentation of the target space, so that the mirror map is\\ninvertible. An explicit formula for the I-function is given for all those\\ntarget spaces and many examples with explicit computations of invariants are\\nprovided.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06193\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06193","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在本文中,我们不考虑凸性条件,计算了加权投影堆栈中Calabi--Yau 三折完全相交的0 属轨道Gromov--Witten不变式。传统的量柱拉夫谢茨原理甚至可能对有环境插入的不变式失效。利用准映射穿墙术,我们可以从陈-阮同构的特定子环计算有插入的不变量,该子环包含所有环境同构类。准映射穿墙给出了一个镜像定理,通过镜像映射表达了 I 函数与 J 函数之间的关系。本文的关键在于找到目标空间的合适 GIT 呈现,从而使镜像映射是可逆的。本文给出了所有目标空间的 I 函数的明确公式,并提供了许多明确计算不变式的例子。
Gromov--Witten Invariants of Non-Convex Complete Intersections in Weighted Projective Stacks
In this paper we compute genus 0 orbifold Gromov--Witten invariants of
Calabi--Yau threefold complete intersections in weighted projective stacks,
regardless of convexity conditions. The traditional quantumn Lefschetz
principle may fail even for invariants with ambient insertions. Using quasimap
wall-crossing, we are able to compute invariants with insertions from a
specific subring of the Chen--Ruan cohomology, which contains all the ambient
cohomology classes. Quasimap wall-crossing gives a mirror theorem expressing the I-function in
terms of the J-function via a mirror map. The key of this paper is to find a
suitable GIT presentation of the target space, so that the mirror map is
invertible. An explicit formula for the I-function is given for all those
target spaces and many examples with explicit computations of invariants are
provided.