投影变种通过退化到带的可扩展性及其在 Calabi-Yau 三折中的应用

Purnaprajna Bangere, Jayan Mukherjee
{"title":"投影变种通过退化到带的可扩展性及其在 Calabi-Yau 三折中的应用","authors":"Purnaprajna Bangere, Jayan Mukherjee","doi":"arxiv-2409.03960","DOIUrl":null,"url":null,"abstract":"In this article we study the extendability of a smooth projective variety by\ndegenerating it to a ribbon. We apply the techniques to study extendability of\nCalabi-Yau threefolds $X_t$ that are general deformations of Calabi-Yau double\ncovers of Fano threefolds of Picard rank $1$. The Calabi-Yau threefolds $X_t\n\\hookrightarrow \\mathbb{P}^{N_l}$, embedded by the complete linear series\n$|lA_t|$, where $A_t$ is the generator of Pic$(X_t)$, $l \\geq j$ and $j$ is the\nindex of $Y$, are general elements of a unique irreducible component\n$\\mathscr{H}_l^Y$ of the Hilbert scheme which contains embedded Calabi-Yau\nribbons on $Y$ as a special locus. For $l = j$, using the classification of\nMukai varieties, we show that the general Calabi-Yau threefold parameterized by\n$\\mathscr{H}_j^Y$ is as many times smoothly extendable as $Y$ itself. On the\nother hand, we find for each deformation type $Y$, an effective integer $l_Y$\nsuch that for $l \\geq l_Y$, the general Calabi-Yau threefold parameterized by\n$\\mathscr{H}_l^Y$ is not extendable. These results provide a contrast and a\nparallel with the lower dimensional analogues; namely, $K3$ surfaces and\ncanonical curves, which stems from the following result we prove: for $l \\geq\nl_Y$, the general hyperplane sections of elements of $\\mathscr{H}_l^Y$ fill out\nan entire irreducible component $\\mathscr{S}_l^Y$ of the Hilbert scheme of\ncanonical surfaces which are precisely $1-$ extendable with $\\mathscr{H}^Y_l$\nbeing the unique component dominating $\\mathscr{S}_l^Y$. The contrast lies in\nthe fact that for polarized $K3$ surfaces of large degree, the canonical curve\nsections do not fill out an entire component while the parallel is in the fact\nthat the canonical curve sections are exactly one-extendable.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":"38 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extendability of projective varieties via degeneration to ribbons with applications to Calabi-Yau threefolds\",\"authors\":\"Purnaprajna Bangere, Jayan Mukherjee\",\"doi\":\"arxiv-2409.03960\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article we study the extendability of a smooth projective variety by\\ndegenerating it to a ribbon. We apply the techniques to study extendability of\\nCalabi-Yau threefolds $X_t$ that are general deformations of Calabi-Yau double\\ncovers of Fano threefolds of Picard rank $1$. The Calabi-Yau threefolds $X_t\\n\\\\hookrightarrow \\\\mathbb{P}^{N_l}$, embedded by the complete linear series\\n$|lA_t|$, where $A_t$ is the generator of Pic$(X_t)$, $l \\\\geq j$ and $j$ is the\\nindex of $Y$, are general elements of a unique irreducible component\\n$\\\\mathscr{H}_l^Y$ of the Hilbert scheme which contains embedded Calabi-Yau\\nribbons on $Y$ as a special locus. For $l = j$, using the classification of\\nMukai varieties, we show that the general Calabi-Yau threefold parameterized by\\n$\\\\mathscr{H}_j^Y$ is as many times smoothly extendable as $Y$ itself. On the\\nother hand, we find for each deformation type $Y$, an effective integer $l_Y$\\nsuch that for $l \\\\geq l_Y$, the general Calabi-Yau threefold parameterized by\\n$\\\\mathscr{H}_l^Y$ is not extendable. These results provide a contrast and a\\nparallel with the lower dimensional analogues; namely, $K3$ surfaces and\\ncanonical curves, which stems from the following result we prove: for $l \\\\geq\\nl_Y$, the general hyperplane sections of elements of $\\\\mathscr{H}_l^Y$ fill out\\nan entire irreducible component $\\\\mathscr{S}_l^Y$ of the Hilbert scheme of\\ncanonical surfaces which are precisely $1-$ extendable with $\\\\mathscr{H}^Y_l$\\nbeing the unique component dominating $\\\\mathscr{S}_l^Y$. The contrast lies in\\nthe fact that for polarized $K3$ surfaces of large degree, the canonical curve\\nsections do not fill out an entire component while the parallel is in the fact\\nthat the canonical curve sections are exactly one-extendable.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.03960\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.03960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这篇文章中,我们通过将光滑投影变种退化为带状来研究它的可延伸性。我们将这些技术应用于研究 Calabi-Yau 三折元 $X_t$ 的可扩展性,它们是皮卡等级为 1$ 的法诺三折元的 Calabi-Yau 双覆盖的一般变形。由完全线性数列$|lA_t|$嵌入的卡拉比-尤三折$X_t\hookrightarrow \mathbb{P}^{N_l}$,其中$A_t$是Pic$(X_t)$的生成器,$l \geq j$和$j$是$Y$的索引、是希尔伯特方案的唯一不可还原分量$\mathscr{H}_l^Y$ 的一般元素,该分量包含作为特殊位置的嵌入卡拉比-约里本在$Y$ 上。对于 $l = j$,我们利用穆凯(Mukai)变体的分类法证明,以$\mathscr{H}_j^Y$为参数的一般卡拉比-耀三重与$Y$本身一样多次可平滑扩展。另一方面,我们为每种变形类型$Y$找到了一个有效整数$l_Y$,即对于$l \geq l_Y$,以$\mathscr{H}_l^Y$为参数的一般卡拉比优三重是不可扩展的。这些结果提供了与低维类似物,即 $K3$ 曲面和典型曲线的对比和平行,这源于我们证明的以下结果:对于 $l \geql_Y$,$\mathscr{H}_l^Y$元素的一般超平面截面填充了经典曲面的希尔伯特方案的整个不可还原部分 $\mathscr{S}_l^Y$,而这些经典曲面恰恰是 1-$ 可扩展的,其中 $\mathscr{H}^Y_l$ 是支配 $\mathscr{S}_l^Y$ 的唯一部分。两者的对比在于,对于大阶数的极化 $K3$ 曲面,典型曲线截面并不填充整个分量,而两者的平行之处在于,典型曲线截面恰好是一可扩展的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extendability of projective varieties via degeneration to ribbons with applications to Calabi-Yau threefolds
In this article we study the extendability of a smooth projective variety by degenerating it to a ribbon. We apply the techniques to study extendability of Calabi-Yau threefolds $X_t$ that are general deformations of Calabi-Yau double covers of Fano threefolds of Picard rank $1$. The Calabi-Yau threefolds $X_t \hookrightarrow \mathbb{P}^{N_l}$, embedded by the complete linear series $|lA_t|$, where $A_t$ is the generator of Pic$(X_t)$, $l \geq j$ and $j$ is the index of $Y$, are general elements of a unique irreducible component $\mathscr{H}_l^Y$ of the Hilbert scheme which contains embedded Calabi-Yau ribbons on $Y$ as a special locus. For $l = j$, using the classification of Mukai varieties, we show that the general Calabi-Yau threefold parameterized by $\mathscr{H}_j^Y$ is as many times smoothly extendable as $Y$ itself. On the other hand, we find for each deformation type $Y$, an effective integer $l_Y$ such that for $l \geq l_Y$, the general Calabi-Yau threefold parameterized by $\mathscr{H}_l^Y$ is not extendable. These results provide a contrast and a parallel with the lower dimensional analogues; namely, $K3$ surfaces and canonical curves, which stems from the following result we prove: for $l \geq l_Y$, the general hyperplane sections of elements of $\mathscr{H}_l^Y$ fill out an entire irreducible component $\mathscr{S}_l^Y$ of the Hilbert scheme of canonical surfaces which are precisely $1-$ extendable with $\mathscr{H}^Y_l$ being the unique component dominating $\mathscr{S}_l^Y$. The contrast lies in the fact that for polarized $K3$ surfaces of large degree, the canonical curve sections do not fill out an entire component while the parallel is in the fact that the canonical curve sections are exactly one-extendable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信