Rahel Hauk, Martine van der Ploeg, Adriaan J. Teuling, Winnie de Winter, Tim H. M. van Emmerik
{"title":"洪水引发的黄油桶泄漏揭示了河流大型塑料的迁移动态","authors":"Rahel Hauk, Martine van der Ploeg, Adriaan J. Teuling, Winnie de Winter, Tim H. M. van Emmerik","doi":"10.1186/s12302-024-00962-1","DOIUrl":null,"url":null,"abstract":"<div><p>During the July 2021 European floods approximately eight million empty dairy packaging (buttertubs) were flushed from a dairy processing facility in Belgium into the Vesdre river. Some were transported further downstream, into the Ourthe river and eventually the Meuse river. There are many unknowns when it comes to plastic transport in rivers, especially in response to floods. We therefore used this incident as an unique opportunity to study these buttertubs as a tracer for plastic transport dynamics in a riverine environment in response to an extreme flood event. Normally, it is unknown when and where individual plastic items found on riverbanks entered the environment. In this case, however, the ID stamps on the buttertups allowed for them to be traced back to the flooding of the factory. We studied the transport and deposition of these buttertubs in the Dutch Meuse over 2 years following the flood. We also collected buttertubs at different points in time to investigate their fragmentation and mass loss. Within 3 weeks of the flood, the buttertubs were transported up to 328 km from the spilling location. Overall, the majority (78%) of buttertubs we found within the first 3 weeks were deposited within less than 100 km of the point of emission. Over the following 2 years, the mean transport distance of the found buttertubs moved downstream from 100 km in July/August 2021, to 153 km in July 2023. The buttertubs average transport velocity decreased from 11.7 km/d within the first 3 weeks, to 0.2 km/d by July 2023. Based on the 89 buttertubs we collected and analyzed in detail over the 2 years, we did not find a significant mass loss. Of all 89 buttertubs found, 47 showed cracks and only 12 appeared to have pieces missing. This study shows that even during extreme flood events, the majority of spilled plastic litter is retained within a limited distance after being emitted into the river. The findings of this study can be utilized to improve plastic transport modelling, and overall better understand plastic transport in the freshwater environment.</p></div>","PeriodicalId":546,"journal":{"name":"Environmental Sciences Europe","volume":null,"pages":null},"PeriodicalIF":6.0000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1186/s12302-024-00962-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Flood-induced buttertub spill reveals riverine macroplastic transport dynamics\",\"authors\":\"Rahel Hauk, Martine van der Ploeg, Adriaan J. Teuling, Winnie de Winter, Tim H. M. van Emmerik\",\"doi\":\"10.1186/s12302-024-00962-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>During the July 2021 European floods approximately eight million empty dairy packaging (buttertubs) were flushed from a dairy processing facility in Belgium into the Vesdre river. Some were transported further downstream, into the Ourthe river and eventually the Meuse river. There are many unknowns when it comes to plastic transport in rivers, especially in response to floods. We therefore used this incident as an unique opportunity to study these buttertubs as a tracer for plastic transport dynamics in a riverine environment in response to an extreme flood event. Normally, it is unknown when and where individual plastic items found on riverbanks entered the environment. In this case, however, the ID stamps on the buttertups allowed for them to be traced back to the flooding of the factory. We studied the transport and deposition of these buttertubs in the Dutch Meuse over 2 years following the flood. We also collected buttertubs at different points in time to investigate their fragmentation and mass loss. Within 3 weeks of the flood, the buttertubs were transported up to 328 km from the spilling location. Overall, the majority (78%) of buttertubs we found within the first 3 weeks were deposited within less than 100 km of the point of emission. Over the following 2 years, the mean transport distance of the found buttertubs moved downstream from 100 km in July/August 2021, to 153 km in July 2023. The buttertubs average transport velocity decreased from 11.7 km/d within the first 3 weeks, to 0.2 km/d by July 2023. Based on the 89 buttertubs we collected and analyzed in detail over the 2 years, we did not find a significant mass loss. Of all 89 buttertubs found, 47 showed cracks and only 12 appeared to have pieces missing. This study shows that even during extreme flood events, the majority of spilled plastic litter is retained within a limited distance after being emitted into the river. The findings of this study can be utilized to improve plastic transport modelling, and overall better understand plastic transport in the freshwater environment.</p></div>\",\"PeriodicalId\":546,\"journal\":{\"name\":\"Environmental Sciences Europe\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-08-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1186/s12302-024-00962-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environmental Sciences Europe\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://link.springer.com/article/10.1186/s12302-024-00962-1\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Sciences Europe","FirstCategoryId":"93","ListUrlMain":"https://link.springer.com/article/10.1186/s12302-024-00962-1","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Flood-induced buttertub spill reveals riverine macroplastic transport dynamics
During the July 2021 European floods approximately eight million empty dairy packaging (buttertubs) were flushed from a dairy processing facility in Belgium into the Vesdre river. Some were transported further downstream, into the Ourthe river and eventually the Meuse river. There are many unknowns when it comes to plastic transport in rivers, especially in response to floods. We therefore used this incident as an unique opportunity to study these buttertubs as a tracer for plastic transport dynamics in a riverine environment in response to an extreme flood event. Normally, it is unknown when and where individual plastic items found on riverbanks entered the environment. In this case, however, the ID stamps on the buttertups allowed for them to be traced back to the flooding of the factory. We studied the transport and deposition of these buttertubs in the Dutch Meuse over 2 years following the flood. We also collected buttertubs at different points in time to investigate their fragmentation and mass loss. Within 3 weeks of the flood, the buttertubs were transported up to 328 km from the spilling location. Overall, the majority (78%) of buttertubs we found within the first 3 weeks were deposited within less than 100 km of the point of emission. Over the following 2 years, the mean transport distance of the found buttertubs moved downstream from 100 km in July/August 2021, to 153 km in July 2023. The buttertubs average transport velocity decreased from 11.7 km/d within the first 3 weeks, to 0.2 km/d by July 2023. Based on the 89 buttertubs we collected and analyzed in detail over the 2 years, we did not find a significant mass loss. Of all 89 buttertubs found, 47 showed cracks and only 12 appeared to have pieces missing. This study shows that even during extreme flood events, the majority of spilled plastic litter is retained within a limited distance after being emitted into the river. The findings of this study can be utilized to improve plastic transport modelling, and overall better understand plastic transport in the freshwater environment.
期刊介绍:
ESEU is an international journal, focusing primarily on Europe, with a broad scope covering all aspects of environmental sciences, including the main topic regulation.
ESEU will discuss the entanglement between environmental sciences and regulation because, in recent years, there have been misunderstandings and even disagreement between stakeholders in these two areas. ESEU will help to improve the comprehension of issues between environmental sciences and regulation.
ESEU will be an outlet from the German-speaking (DACH) countries to Europe and an inlet from Europe to the DACH countries regarding environmental sciences and regulation.
Moreover, ESEU will facilitate the exchange of ideas and interaction between Europe and the DACH countries regarding environmental regulatory issues.
Although Europe is at the center of ESEU, the journal will not exclude the rest of the world, because regulatory issues pertaining to environmental sciences can be fully seen only from a global perspective.