双向变换代数族的结构

Andriy Regeta, Christian Urech, Immanuel van Santen
{"title":"双向变换代数族的结构","authors":"Andriy Regeta, Christian Urech, Immanuel van Santen","doi":"arxiv-2409.06475","DOIUrl":null,"url":null,"abstract":"We give a description of the algebraic families of birational transformations\nof an algebraic variety X. As an application, we show that the morphisms to\nBir(X) given by algebraic families satisfy a Chevalley type result and a\ncertain fibre-dimension formula. Moreover, we show that the algebraic subgroups\nof Bir(X) are exactly the closed finite-dimensional subgroups with finitely\nmany components. We also study algebraic families of birational transformations\npreserving a fibration. This builds on previous work of Blanc-Furter, Hanamura,\nand Ramanujam.","PeriodicalId":501063,"journal":{"name":"arXiv - MATH - Algebraic Geometry","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Structure of Algebraic Families of Birational Transformations\",\"authors\":\"Andriy Regeta, Christian Urech, Immanuel van Santen\",\"doi\":\"arxiv-2409.06475\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We give a description of the algebraic families of birational transformations\\nof an algebraic variety X. As an application, we show that the morphisms to\\nBir(X) given by algebraic families satisfy a Chevalley type result and a\\ncertain fibre-dimension formula. Moreover, we show that the algebraic subgroups\\nof Bir(X) are exactly the closed finite-dimensional subgroups with finitely\\nmany components. We also study algebraic families of birational transformations\\npreserving a fibration. This builds on previous work of Blanc-Furter, Hanamura,\\nand Ramanujam.\",\"PeriodicalId\":501063,\"journal\":{\"name\":\"arXiv - MATH - Algebraic Geometry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Algebraic Geometry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2409.06475\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.06475","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为应用,我们证明由代数族给出的 Bir(X) 形态满足切瓦利类型结果和特定纤维维公式。此外,我们还证明了 Bir(X) 的代数子群正是具有有限多个分量的封闭有限维子群。我们还研究了保留纤维的双变换代数族。这建立在 Blanc-Furter、Hanamura 和 Ramanujam 以前的研究基础之上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Structure of Algebraic Families of Birational Transformations
We give a description of the algebraic families of birational transformations of an algebraic variety X. As an application, we show that the morphisms to Bir(X) given by algebraic families satisfy a Chevalley type result and a certain fibre-dimension formula. Moreover, we show that the algebraic subgroups of Bir(X) are exactly the closed finite-dimensional subgroups with finitely many components. We also study algebraic families of birational transformations preserving a fibration. This builds on previous work of Blanc-Furter, Hanamura, and Ramanujam.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信